RUI: Nonlinear Free Boundary Problems
RUI:非线性自由边界问题
基本信息
- 批准号:0707694
- 负责人:
- 金额:$ 12.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-01 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will develop systematic theories to understand the solution structures of nonlinear free boundary problems arising from change-of-type systems in multidimensional conservation laws and from tumor growth and treatment models. Multidimensional conservation laws are mathematical models for fundamental processes in physics and engineering, such as high-speed flows and supersonic jets. A distinctive feature of multidimensional conservation laws in self-similar coordinates is that they change their type (transonic), meaning that they are hyperbolic (supersonic) far from the origin, and mixed (subsonic) near the origin. The investigator will continue her work on these nonlinear transonic problems to gain new physical insights, to develop novel analytical tools, and to find the correct mathematical frameworks in which to pose the nonlinear conservation laws. In a different area, the investigator will develop analytical and numerical theories to understand and to refine model problems arising in tumor growth and treatment.This project will lead to a deeper understanding of multidimensional transonic problems and tumor model problems, and will provide more efficient and effective methods for the study of systems that include compressible gas dynamics, elasticity, thermodynamics, multi-phase and porous medium flow, and complex biological systems. The project will take place at a Hispanic-serving institution and will involve undergraduate students in simulations of these nonlinear problems, preparing them for further work in design, implementation, and development of algorithms.
该项目将发展系统理论来理解由多维守恒定律中的类型变化系统以及肿瘤生长和治疗模型引起的非线性自由边界问题的解结构。 多维守恒定律是物理和工程中基本过程(例如高速流动和超音速喷射)的数学模型。 自相似坐标中多维守恒定律的一个显着特征是它们改变了它们的类型(跨音速),这意味着它们远离原点是双曲(超音速)的,而靠近原点是混合(亚音速)的。 研究人员将继续研究这些非线性跨音速问题,以获得新的物理见解,开发新颖的分析工具,并找到提出非线性守恒定律的正确数学框架。 在不同的领域,研究人员将发展分析和数值理论来理解和完善肿瘤生长和治疗中出现的模型问题。该项目将导致对多维跨声速问题和肿瘤模型问题的更深入理解,并将为包括可压缩气体动力学、弹性、热力学、多相和多孔介质流以及复杂生物系统在内的系统研究提供更高效和有效的方法。 该项目将在一家为西班牙裔服务的机构进行,让本科生参与这些非线性问题的模拟,为他们进一步设计、实现和开发算法做好准备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eun Heui Kim其他文献
Thermal-image-based wildfire spread simulation using a linearized model of an advection–diffusion–reaction equation
使用平流扩散反应方程的线性模型进行基于热图像的野火蔓延模拟
- DOI:
10.1177/0037549712440519 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Eun Heui Kim;M. Tran;Karen Yang - 通讯作者:
Karen Yang
Convergence of parallel multisplitting methods using ILU factorizations
- DOI:
10.1007/bf02935747 - 发表时间:
2004-03-01 - 期刊:
- 影响因子:2.700
- 作者:
Jae Heon Yun;Seyoung Oh;Eun Heui Kim - 通讯作者:
Eun Heui Kim
Cerebral glucose metabolism differs according to future weight change
脑葡萄糖代谢根据未来体重变化而变化
- DOI:
10.1007/s11682-019-00180-x - 发表时间:
2019 - 期刊:
- 影响因子:3.2
- 作者:
Jeong Mi Kim;M. Jang;Eun Heui Kim;Mijin Kim;S. Choi;Keunyoung Kim;Kyoungjune Pak;Y. Jeon;Sang Soo Kim;B. Kim;Seong‐Jang Kim;I. Kim - 通讯作者:
I. Kim
Existence and stability of perturbed transonic shocks for compressible steady potential flows
- DOI:
10.1016/j.na.2007.07.058 - 发表时间:
2008-09 - 期刊:
- 影响因子:1.4
- 作者:
Eun Heui Kim - 通讯作者:
Eun Heui Kim
Singular Gierer–Meinhardt systems of elliptic boundary value problems
- DOI:
10.1016/j.jmaa.2004.10.039 - 发表时间:
2005-08 - 期刊:
- 影响因子:1.3
- 作者:
Eun Heui Kim - 通讯作者:
Eun Heui Kim
Eun Heui Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eun Heui Kim', 18)}}的其他基金
RUI: Multidimensional Conservation Laws and Related Applications
RUI:多维守恒定律及相关应用
- 批准号:
1109202 - 财政年份:2011
- 资助金额:
$ 12.87万 - 项目类别:
Standard Grant
Nonlinear elliptic boundary value problems
非线性椭圆边值问题
- 批准号:
0228854 - 财政年份:2001
- 资助金额:
$ 12.87万 - 项目类别:
Standard Grant
Nonlinear elliptic boundary value problems
非线性椭圆边值问题
- 批准号:
0103823 - 财政年份:2001
- 资助金额:
$ 12.87万 - 项目类别:
Standard Grant
相似海外基金
Asymptotic analysis and behavior of free boundary for nonlinear parabolic problems
非线性抛物线问题的渐近分析和自由边界行为
- 批准号:
22K03387 - 财政年份:2022
- 资助金额:
$ 12.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Scheduling Driving Sensing and Control Nodes in Nonlinear Networks with Applications to Fuel-Free Energy Systems
职业:调度非线性网络中的驱动传感和控制节点及其在无燃料能源系统中的应用
- 批准号:
2044430 - 财政年份:2021
- 资助金额:
$ 12.87万 - 项目类别:
Standard Grant
CAREER: Scheduling Driving Sensing and Control Nodes in Nonlinear Networks with Applications to Fuel-Free Energy Systems
职业:调度非线性网络中的驱动传感和控制节点及其在无燃料能源系统中的应用
- 批准号:
2152450 - 财政年份:2021
- 资助金额:
$ 12.87万 - 项目类别:
Standard Grant
Existence and Stability Analysis for Nonlinear Free Boundary and Evolution Problems
非线性自由边界和演化问题的存在性和稳定性分析
- 批准号:
2054689 - 财政年份:2021
- 资助金额:
$ 12.87万 - 项目类别:
Standard Grant
Analysis of Nonlinear Partial Differential Equations in Free Boundary Fluid Dynamics, Mathematical Biology, and Kinetic Theory
自由边界流体动力学、数学生物学和运动理论中的非线性偏微分方程分析
- 批准号:
2055271 - 财政年份:2021
- 资助金额:
$ 12.87万 - 项目类别:
Standard Grant
EAGER: Nonlinear label-free microscopy for evaluation of MSC osteogenic potency in 3D culture systems
EAGER:用于评估 3D 培养系统中 MSC 成骨功效的非线性无标记显微镜
- 批准号:
2040118 - 财政年份:2020
- 资助金额:
$ 12.87万 - 项目类别:
Continuing Grant
Study on free boundary problems arising in mathematical ecology and related nonlinear diffusion equations
数学生态学中自由边界问题及相关非线性扩散方程的研究
- 批准号:
19K03573 - 财政年份:2019
- 资助金额:
$ 12.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonlinear spectroscopy using two-color x-ray free-electron laser pulses
使用双色 X 射线自由电子激光脉冲的非线性光谱
- 批准号:
19K20604 - 财政年份:2019
- 资助金额:
$ 12.87万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Nonlinear Free Boundary and Evolution Problems
非线性自由边界和演化问题
- 批准号:
1764278 - 财政年份:2018
- 资助金额:
$ 12.87万 - 项目类别:
Continuing Grant
Study on damage-free X-ray nonlinear spectroscopy
无损伤X射线非线性光谱研究
- 批准号:
18H03474 - 财政年份:2018
- 资助金额:
$ 12.87万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




