SHF: Large: Collaborative Research: PXGL: Cyberinfrastructure for Scalable Graph Execution
SHF:大型:协作研究:PXGL:可扩展图形执行的网络基础设施
基本信息
- 批准号:1111888
- 负责人:
- 金额:$ 110万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-01 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The most powerful computing systems in the world have historically been dedicated to solving scientific problems. Until recently, the computations performed by these systems have typically been simulations of various physical phenomena. However, a new paradigm for scientific discovery has been steadily rising in importance, namely, data-intensive science, which focuses sophisticated analysis techniques on the enormous (and ever increasing) amounts of data being produced in scientific, commercial, and social endeavors. Important research based on data-intensive science include areas as diverse as knowledge discovery, bioinformatics, proteomics and genomics, data mining and search, electronic design automation, computer vision, and Internet routing. Unfortunately, the computational approaches needed for data-intensive science differ markedly from those that have been so effective for simulation-based supercomputing. To enable and facilitate efficient execution of data-intensive scientific problems, this project will develop a comprehensive hardware and software supercomputing system for data-intensive science.Graph algorithms and data structures are fundamental to data-intensive computations and, consequently, this project is focused on providing fundamental, new understandings of the basics of large-scale graph processing and how to build scalable systems to efficiently solve large-scale graph problems. In particular, this work will characterize processing overheads and the limits of graph processing scalability, develop performance models that properly capture graph algorithms, define the (co-design) process for developing graph-specific hardware, and experimentally verify our approach with a prototype execution environment. Key capabilities of our system include: a novel fine-grained parallel programming model, a scalable library of graph algorithms and data structures, a graph-optimized core architecture, and a scalable graph execution platform. The project will also address the programming challenges involved in constructing scalable and reliable software for data-intensive problems.
世界上最强大的计算系统历来致力于解决科学问题。直到最近,这些系统执行的计算通常都是对各种物理现象的模拟。然而,科学发现的新范式的重要性正在稳步上升,即数据密集型科学,它将复杂的分析技术集中在科学、商业和社会活动中产生的大量(且不断增加的)数据上。基于数据密集型科学的重要研究包括知识发现、生物信息学、蛋白质组学和基因组学、数据挖掘和搜索、电子设计自动化、计算机视觉和互联网路由等多种领域。不幸的是,数据密集型科学所需的计算方法与基于模拟的超级计算非常有效的计算方法明显不同。为了实现和促进数据密集型科学问题的高效执行,该项目将为数据密集型科学开发一个全面的硬件和软件超级计算系统。图算法和数据结构是数据密集型计算的基础,因此,该项目致力于提供对大规模图处理基础知识以及如何构建可扩展系统以有效解决大规模图问题的全新理解。特别是,这项工作将描述处理开销和图形处理可扩展性的限制,开发正确捕获图形算法的性能模型,定义开发图形特定硬件的(协同设计)过程,并使用原型执行环境对我们的方法进行实验验证。我们系统的关键功能包括:新颖的细粒度并行编程模型、可扩展的图算法和数据结构库、图优化的核心架构以及可扩展的图执行平台。该项目还将解决为数据密集型问题构建可扩展且可靠的软件所涉及的编程挑战。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Lumsdaine其他文献
Multi-scale contrast-based saliency enhancement for salient object detection
用于显着目标检测的基于多尺度对比度的显着性增强
- DOI:
10.1049/iet-cvi.2013.0118 - 发表时间:
2014-06 - 期刊:
- 影响因子:1.7
- 作者:
Wenhui Zhou;Teng Song;Lili Lin;Andrew Lumsdaine - 通讯作者:
Andrew Lumsdaine
Cascade residual learning based adaptive feature aggregation for light field super-resolution
基于级联残差学习的自适应特征聚合用于光场超分辨率
- DOI:
10.1016/j.patcog.2025.111616 - 发表时间:
2025-09-01 - 期刊:
- 影响因子:7.600
- 作者:
Hao Zhang;Wenhui Zhou;Lili Lin;Andrew Lumsdaine - 通讯作者:
Andrew Lumsdaine
Andrew Lumsdaine的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Lumsdaine', 18)}}的其他基金
SI2-SSE: GraphPack: Unified Graph Processing with Parallel Boost Graph Library, GraphBLAS, and High-Level Generic Algorithm Interfaces
SI2-SSE:GraphPack:具有 Parallel Boost Graph Library、GraphBLAS 和高级通用算法接口的统一图形处理
- 批准号:
1716828 - 财政年份:2016
- 资助金额:
$ 110万 - 项目类别:
Standard Grant
SI2-SSE: GraphPack: Unified Graph Processing with Parallel Boost Graph Library, GraphBLAS, and High-Level Generic Algorithm Interfaces
SI2-SSE:GraphPack:具有 Parallel Boost Graph Library、GraphBLAS 和高级通用算法接口的统一图形处理
- 批准号:
1642439 - 财政年份:2016
- 资助金额:
$ 110万 - 项目类别:
Standard Grant
CSR-PSCE, TM: A Declarative Approach to Managing the Complexity of Massively Parallel Programs
CSR-PSCE, TM:管理大规模并行程序复杂性的声明式方法
- 批准号:
0834722 - 财政年份:2008
- 资助金额:
$ 110万 - 项目类别:
Continuing Grant
Collaborative Research: Modular Metaprogramming
协作研究:模块化元编程
- 批准号:
0702717 - 财政年份:2007
- 资助金额:
$ 110万 - 项目类别:
Standard Grant
ST-CRTS: Collaborative Research: Lifting Compiler Optimizations via Generic Programming
ST-CRTS:协作研究:通过通用编程提升编译器优化
- 批准号:
0541335 - 财政年份:2006
- 资助金额:
$ 110万 - 项目类别:
Standard Grant
High Performance Software Components for Scientific Computing
用于科学计算的高性能软件组件
- 批准号:
0196531 - 财政年份:2001
- 资助金额:
$ 110万 - 项目类别:
Standard Grant
NGS: Open Compilation for Self-Optimizing Generic Components
NGS:自优化通用组件的开放编译
- 批准号:
0131354 - 财政年份:2001
- 资助金额:
$ 110万 - 项目类别:
Continuing Grant
High Performance Software Components for Scientific Computing
用于科学计算的高性能软件组件
- 批准号:
9982205 - 财政年份:2000
- 资助金额:
$ 110万 - 项目类别:
Standard Grant
CAREER: High-Performance Computing for Computational Science and Engineering
职业:计算科学与工程的高性能计算
- 批准号:
9502710 - 财政年份:1995
- 资助金额:
$ 110万 - 项目类别:
Standard Grant
相似国自然基金
水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
- 批准号:
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
- 批准号:31972875
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
- 批准号:30971650
- 批准年份:2009
- 资助金额:8.0 万元
- 项目类别:面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
- 批准号:30800648
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
- 批准号:30772435
- 批准年份:2007
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 110万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 110万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402805 - 财政年份:2024
- 资助金额:
$ 110万 - 项目类别:
Standard Grant
SHF: Large: Collaborative Research: Molecular computing for the real world
SHF:大型:协作研究:现实世界的分子计算
- 批准号:
1832985 - 财政年份:2018
- 资助金额:
$ 110万 - 项目类别:
Continuing Grant
SHF: Large: Collaborative Research: Next Generation Communication Mechanisms exploiting Heterogeneity, Hierarchy and Concurrency for Emerging HPC Systems
SHF:大型:协作研究:利用新兴 HPC 系统的异构性、层次结构和并发性的下一代通信机制
- 批准号:
1565336 - 财政年份:2016
- 资助金额:
$ 110万 - 项目类别:
Standard Grant
SHF: Large: Collaborative Research: Next Generation Communication Mechanisms exploiting Heterogeneity, Hierarchy and Concurrency for Emerging HPC Systems
SHF:大型:协作研究:利用新兴 HPC 系统的异构性、层次结构和并发性的下一代通信机制
- 批准号:
1565414 - 财政年份:2016
- 资助金额:
$ 110万 - 项目类别:
Standard Grant
SHF: Large: Collaborative Research: Exploiting the Naturalness of Software
SHF:大型:协作研究:利用软件的自然性
- 批准号:
1723215 - 财政年份:2016
- 资助金额:
$ 110万 - 项目类别:
Continuing Grant
SHF: Large: Collaborative Research: Next Generation Communication Mechanisms exploiting Heterogeneity, Hierarchy and Concurrency for Emerging HPC Systems
SHF:大型:协作研究:利用新兴 HPC 系统的异构性、层次结构和并发性的下一代通信机制
- 批准号:
1565431 - 财政年份:2016
- 资助金额:
$ 110万 - 项目类别:
Standard Grant
SHF: Large: Collaborative Research: Molecular computing for the real world
SHF:大型:协作研究:现实世界的分子计算
- 批准号:
1518715 - 财政年份:2015
- 资助金额:
$ 110万 - 项目类别:
Continuing Grant
SHF: Large: Collaborative Research: Molecular computing for the real world
SHF:大型:协作研究:现实世界的分子计算
- 批准号:
1518833 - 财政年份:2015
- 资助金额:
$ 110万 - 项目类别:
Continuing Grant