Chemotaxis Models in Biology and Texture Development in Materials: Numerical Methods, Analysis, and Modeling
生物学中的趋化模型和材料中的纹理发展:数值方法、分析和建模
基本信息
- 批准号:1112984
- 负责人:
- 金额:$ 14.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The focus of the proposed project is to develop new numerical and analytical techniques to study problems in Biology and Materials Science. These problems give rise to challenging issues for analysis, modeling, and simulations. In this project two areas have been selected for the research directly from potential applications: chemotaxis and chemotaxis models in Biology and texture development and evolution of microstructure in Materials. Chemotaxis refers to mechanisms by which cellular motion occurs in response to an external stimulus, usually a chemical one. Chemotaxis is an important process in many medical and biological applications, including bacteria/cell aggregation and pattern formation mechanisms, as well as tumor growth. Mathematical models of the biological systems are an important tool used in the study of these patterns. Although there is an extensive literature on this subject, only a few numerical methods have been proposed for chemotaxis models. Chemotaxis systems are usually described by highly nonlinear time-dependent partial differential equations. Therefore, development of accurate and efficient numerical methods is crucial for the modeling and analysis of the chemotaxis. Furthermore, a common property of all existing chemotaxis systems is their ability to model a concentration phenomenon that mathematically results in solutions, which rapidly grow in small neighborhoods of concentration points/curves. The solutions may blow up or may exhibit a very singular, spiky behavior. This blow-up represents a mathematical description of a cell concentration phenomenon that occurs in real biological systems. In either case, capturing such solutions numerically is a very challenging problem. The goal of the first project is to design, implement and analyze novel accurate and efficient numerical methods, as well as develop new analytical methods to study chemotaxis models along with closely related problems in physics and biology. The goal of the second project is to study texture development and evolution of microstructure in Materials. Cellular networks are ubiquitous in nature. They exhibit behavior on many different length and time scales and are generally metastable. Most technologically useful materials are polycrystalline microstructures composed of a myriad of small crystallites, called grains, separated by interfaces, called grain boundaries. The energetics and connectivity of the grain boundary network plays a crucial role in determining the properties of a material across a wide range of scales. A central goal of research in materials science is to develop technologies capable of producing an arrangement of grains -a texture- appropriate for a desired set of material properties. The main objective of the second project is to understand the role of energy in material texture development. For this, a recently discovered Grain Boundary Character Distribution is introduced and investigated by the use of a large scale simulation and mathematical analysis. Grain Boundary Character Distribution is a new characterization of the texture which is found to be strongly correlated to the interfacial energy. This research will lead to new analytical/computational tools to study grain networks, along with a better understanding of grain boundary distributions, grain boundary properties, and how they evolve during materials processing.The path to new scientific discoveries lies through new areas of research, interdisciplinary collaboration, and new opportunities. The proposed projects will involve interdisciplinary research and will enhance infrastructure through the development of new analytical and computational tools. The first part of the proposed work, will make fundamental contributions to the development of new numerical and analytical methods which will be used in solving biomedical problems, for example in developing a better understanding of cancer, as well as initiating new collaboration among disciplines. In the second part of the proposal, both new knowledge and new tools will emerge from this part of the project, which will be used to increase the reliability of materials used, for example in aircraft, microprocessors, and many other devices. Educational activities for the proposed projects include the mentorship of graduate and undergraduate students and the development of new modeling course.
拟议项目的重点是开发新的数值和分析技术来研究生物学和材料科学中的问题。这些问题给分析、建模和仿真带来了挑战性的问题。在这个项目中,直接从潜在的应用中选择了两个领域进行研究:生物学中的趋化和趋化模型以及材料微观结构的发展和演化。趋化性是指细胞对外界刺激(通常是化学刺激)做出反应时发生运动的机制。趋化作用在许多医学和生物学应用中是一个重要的过程,包括细菌/细胞聚集和模式形成机制,以及肿瘤生长。生物系统的数学模型是研究这些模式的重要工具。虽然关于这一主题的文献很多,但针对趋化模型提出的数值方法还很少。趋化系统通常用高度非线性、含时的偏微分方程组来描述。因此,发展准确、高效的数值方法对趋化性的建模和分析至关重要。此外,所有现有趋化系统的一个共同属性是它们能够对集中现象进行建模,这种集中现象在数学上导致解决方案,这些解决方案在聚集点/曲线的小社区快速增长。解决方案可能会爆炸,或者可能会表现出非常独特的尖峰行为。这种爆炸代表了对真实生物系统中发生的细胞集中现象的数学描述。在任何一种情况下,从数字上捕捉这样的解都是一个非常具有挑战性的问题。第一个项目的目标是设计、实施和分析新的准确和高效的数值方法,并开发新的分析方法来研究趋化模型以及与物理和生物学密切相关的问题。第二个项目的目标是研究材料中织构的发展和微观结构的演变。蜂窝网络在自然界中无处不在。它们在许多不同的长度和时间尺度上表现出行为,并且通常是亚稳定的。大多数技术上有用的材料是由无数称为颗粒的小晶体组成的多晶微结构,它们被称为晶界的界面隔开。晶界网络的能量学和连通性在决定材料在大范围尺度上的性质方面起着至关重要的作用。材料科学研究的一个中心目标是开发能够产生一种适合于所需材料特性的颗粒排列--一种纹理--的技术。第二个项目的主要目标是了解能量在材料纹理发展中的作用。为此,引入了一种新发现的晶界特征分布,并利用大规模的模拟和数学分析对其进行了研究。晶界特征分布是一种新的织构表征方法,它与界面能有很强的相关性。这项研究将带来新的分析/计算工具来研究颗粒网络,以及更好地了解晶界分布、晶界属性以及它们在材料加工过程中如何演变。通往新科学发现的道路取决于新的研究领域、跨学科合作和新的机会。拟议的项目将涉及跨学科研究,并将通过开发新的分析和计算工具来加强基础设施。拟议工作的第一部分将对开发新的数值和分析方法做出根本性贡献,这些方法将用于解决生物医学问题,例如,在更好地理解癌症以及启动学科之间的新合作方面。在提案的第二部分,项目的这一部分将产生新知识和新工具,用于提高所用材料的可靠性,例如用于飞机、微处理器和许多其他设备的材料。拟议项目的教育活动包括指导研究生和本科生以及开发新的建模课程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yekaterina Epshteyn其他文献
Well-balanced positivity preserving central-upwind scheme with a novel wet/dry reconstruction on triangular grids for the Saint-Venant system
平衡良好的正性保留中心迎风方案,在圣维南系统的三角网格上采用新颖的湿/干重建
- DOI:
10.1016/j.jcp.2018.07.038 - 发表时间:
2018-12 - 期刊:
- 影响因子:4.1
- 作者:
Xin Liu;Jason Albright;Yekaterina Epshteyn;Alex;er Kurganov - 通讯作者:
er Kurganov
Energy stable and structure-preserving algorithms for the stochastic Galerkin system of 2D shallow water equations
二维浅水方程随机伽辽金系统的能量稳定且保结构算法
- DOI:
10.1016/j.cma.2025.117932 - 发表时间:
2025-05-15 - 期刊:
- 影响因子:7.300
- 作者:
Yekaterina Epshteyn;Akil Narayan;Yinqian Yu - 通讯作者:
Yinqian Yu
結晶方位差と三重点による結晶粒界の発展方程式
晶体取向差和三相点引起的晶界演化方程
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Yekaterina Epshteyn;Chun Liu;水野将司 - 通讯作者:
水野将司
A simple mathematical model of lipopolysaccharide signaling through toll-like receptor 4 results in complex insights on preconditioning
- DOI:
10.1016/j.jcrc.2007.10.006 - 发表时间:
2007-12-01 - 期刊:
- 影响因子:
- 作者:
Yekaterina Epshteyn;Beatrice Riviere;David Swigon;Yoram Vodovotz - 通讯作者:
Yoram Vodovotz
Yekaterina Epshteyn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yekaterina Epshteyn', 18)}}的其他基金
Structure-Preserving Algorithms for Hyperbolic Balance Laws with Uncertainty
不确定性双曲平衡定律的结构保持算法
- 批准号:
2207207 - 财政年份:2022
- 资助金额:
$ 14.96万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Microstructure by Design: Integrating Grain Growth Experiments, Data Analytics, Simulation, and Theory
合作研究:DMREF:微观结构设计:整合晶粒生长实验、数据分析、模拟和理论
- 批准号:
2118172 - 财政年份:2021
- 资助金额:
$ 14.96万 - 项目类别:
Standard Grant
Collaborative Research: Towards a Predictive Theory of Microstructure Evolution in Polycrystalline Materials
合作研究:多晶材料微观结构演化的预测理论
- 批准号:
1905463 - 财政年份:2019
- 资助金额:
$ 14.96万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Exploring the role of vitamin transport in insect models of disease vector biology
探索维生素运输在病媒生物学昆虫模型中的作用
- 批准号:
2884651 - 财政年份:2023
- 资助金额:
$ 14.96万 - 项目类别:
Studentship
Engineering 3D Osteosarcoma Models to Elucidate Biology and Inform Drug Discovery
工程 3D 骨肉瘤模型以阐明生物学并为药物发现提供信息
- 批准号:
10564801 - 财政年份:2023
- 资助金额:
$ 14.96万 - 项目类别:
Engineering Circadian Biology into Induced Pluripotent Stem Cell Organ-on-a-Chip Models
将昼夜节律生物学工程转化为诱导多能干细胞器官芯片模型
- 批准号:
NC/X002152/1 - 财政年份:2023
- 资助金额:
$ 14.96万 - 项目类别:
Research Grant
Microlocal Analysis - A Unified Approach for Geometric Models in Biology
微局部分析 - 生物学中几何模型的统一方法
- 批准号:
DP220101808 - 财政年份:2023
- 资助金额:
$ 14.96万 - 项目类别:
Discovery Projects
Investigating IQGAP1, a scaffold protein, in liver biology and Hepatocellular Carcinoma to overcome barriers in in vivo models
研究肝脏生物学和肝细胞癌中的支架蛋白 IQGAP1,以克服体内模型中的障碍
- 批准号:
10370768 - 财政年份:2023
- 资助金额:
$ 14.96万 - 项目类别:
NSF Postdoctoral Fellowship in Biology FY 2021: Integrating microbial dynamics into methane models for northern peatland and post-glacial lakes
2021 财年 NSF 生物学博士后奖学金:将微生物动力学整合到北部泥炭地和冰河后湖泊的甲烷模型中
- 批准号:
2109429 - 财政年份:2022
- 资助金额:
$ 14.96万 - 项目类别:
Fellowship Award
EAGER: Formal Analysis of Stochastic Models in Systems Biology Under Uncertainty
EAGER:不确定性下系统生物学随机模型的形式分析
- 批准号:
2227898 - 财政年份:2022
- 资助金额:
$ 14.96万 - 项目类别:
Continuing Grant
Using ant biology and natural environments to enhance models of vision and robot navigation
利用蚂蚁生物学和自然环境来增强视觉和机器人导航模型
- 批准号:
2768907 - 财政年份:2022
- 资助金额:
$ 14.96万 - 项目类别:
Studentship
Analysis of Models in Mathematical Biology and of Sign Pattern Matrices
数学生物学模型和符号模式矩阵分析
- 批准号:
RGPIN-2016-03677 - 财政年份:2022
- 资助金额:
$ 14.96万 - 项目类别:
Discovery Grants Program - Individual
Open phase-separation models for cancer systems biology
癌症系统生物学的开放相分离模型
- 批准号:
10829012 - 财政年份:2022
- 资助金额:
$ 14.96万 - 项目类别:














{{item.name}}会员




