Structure-Preserving Algorithms for Hyperbolic Balance Laws with Uncertainty
不确定性双曲平衡定律的结构保持算法
基本信息
- 批准号:2207207
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The project will make significant contributions to the design and analysis of novel stochastic models and numerical algorithms for hyperbolic conservation/balance laws with uncertainty. Such systems are the essential mathematical apparatus for modeling a variety of complex physical phenomena, including wave propagation and fluid flow. The developed stochastic models and numerical methods will improve the accuracy and predictive capabilities of the computational tools used in different areas of science and engineering with applications ranging from coastal and hydraulic engineering, to modeling atmospheric and oceanographic phenomena, including hurricanes, typhoons, tsunamis, and resulting storm surges. The obtained numerical algorithms and data will be made available to other researchers. For the training of the next-generation mathematical workforce, in addition to mentoring of graduate and undergraduate students, the PIs will participate in outreach activities and will continue to work towards increasing diversity and broadening participation within STEM.The main objective of the project is the development and analysis of robust high-resolution structure-preserving stochastic models and numerical methods for hyperbolic conservation/balance laws with uncertainty. As a primary exemplar, the research will focus on the shallow water equations, but the designed tools will be applicable to a wider class of conservation/balance laws, as well as to convection-diffusion model problems, and problems more general than the shallow water equations will be investigated. Shallow water models and related systems are widely used in many important applications related to modeling and prediction of the dynamics of surface flows, such as water flows in rivers, lakes, and coastal areas. The classical system of deterministic shallow water equations, known as the Saint-Venant system, is a nonlinear hyperbolic system of conservation/balance laws. The Saint-Venant model can admit non-smooth solutions that may have shocks, rarefaction waves, and if the bottom topography is discontinuous, contact discontinuities. In the latter case, the solution may not be unique, which makes the development of accurate and efficient algorithms more challenging even in the one-dimensional deterministic case. Taking into account the effects of, for example, Coriolis forces, bottom friction stresses, and randomness/uncertainties in the data, on one hand is crucial for the design of models and simulations with improved predictive capabilities. On the other hand, such mathematical models can present a significant challenge for the construction of robust numerical algorithms. Therefore, the primary goals of this research are (1) to develop intrusive and non-intrusive robust uncertainty quantification (UQ) techniques that will lead to physically-relevant stochastic shallow water models and related systems; (2) to design and analyze adaptive high-order accurate structure-preserving deterministic and stochastic solvers for resulting models; (3) and to develop computationally efficient and parallelizable algorithms. Advances achieved by the project will tackle outstanding challenges in numerical methods for nonlinear conservation/balance laws and UQ for transport problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将为具有不确定性的双曲守恒/平衡律的新型随机模型和数值算法的设计和分析做出重大贡献。这些系统是模拟各种复杂物理现象的基本数学设备,包括波的传播和流体流动。所开发的随机模型和数值方法将提高不同科学和工程领域中使用的计算工具的准确性和预测能力,其应用范围从沿海和水利工程,到模拟大气和海洋现象,包括飓风,台风,海啸和由此产生的风暴潮。获得的数值算法和数据将提供给其他研究人员。为了培养下一代数学人才,除了指导研究生和本科生,PI将参与外展活动,并将继续致力于增加STEM的多样性和扩大参与。该项目的主要目标是开发和分析稳健的高分辨率结构保持随机模型和双曲守恒数值方法。平衡法律与不确定性。作为主要范例,研究将集中在浅水方程上,但设计的工具将适用于更广泛的一类守恒/平衡定律,以及对流扩散模型问题,并且比浅水方程更一般的问题将被研究。浅水模型和相关系统广泛用于与地表流(诸如河流、湖泊和沿海区域中的水流)的动力学的建模和预测相关的许多重要应用中。经典的确定性浅水方程组,称为圣维南系统,是一个非线性双曲守恒/平衡律系统。圣维南模型可以接受可能有冲击、稀疏波的非光滑解,如果海底地形不连续,则可以接受接触不连续。在后一种情况下,解决方案可能不是唯一的,这使得即使在一维确定性的情况下,精确和有效的算法的开发也更具挑战性。一方面,考虑到科里奥利力、底部摩擦应力和数据中的随机性/不确定性的影响对于设计具有改进预测能力的模型和模拟至关重要。另一方面,这样的数学模型可以提出一个显着的挑战,强大的数值算法的建设。因此,本研究的主要目标是(1)开发侵入式和非侵入式鲁棒不确定性量化(UQ)技术,这将导致物理相关的随机浅水模型和相关系统;(2)设计和分析自适应高阶精确的结构保持确定性和随机解算器的结果模型;(3)和开发计算效率和并行化算法。该项目所取得的进展将解决非线性守恒/平衡定律和UQ的数值方法运输问题的突出挑战。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Non-dissipative and structure-preserving emulators via spherical optimization
通过球形优化实现非耗散且结构保持的模拟器
- DOI:10.1093/imaiai/iaac021
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Dai, Dihan;Epshteyn, Yekaterina;Narayan, Akil
- 通讯作者:Narayan, Akil
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yekaterina Epshteyn其他文献
Well-balanced positivity preserving central-upwind scheme with a novel wet/dry reconstruction on triangular grids for the Saint-Venant system
平衡良好的正性保留中心迎风方案,在圣维南系统的三角网格上采用新颖的湿/干重建
- DOI:
10.1016/j.jcp.2018.07.038 - 发表时间:
2018-12 - 期刊:
- 影响因子:4.1
- 作者:
Xin Liu;Jason Albright;Yekaterina Epshteyn;Alex;er Kurganov - 通讯作者:
er Kurganov
Energy stable and structure-preserving algorithms for the stochastic Galerkin system of 2D shallow water equations
二维浅水方程随机伽辽金系统的能量稳定且保结构算法
- DOI:
10.1016/j.cma.2025.117932 - 发表时间:
2025-05-15 - 期刊:
- 影响因子:7.300
- 作者:
Yekaterina Epshteyn;Akil Narayan;Yinqian Yu - 通讯作者:
Yinqian Yu
結晶方位差と三重点による結晶粒界の発展方程式
晶体取向差和三相点引起的晶界演化方程
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Yekaterina Epshteyn;Chun Liu;水野将司 - 通讯作者:
水野将司
A simple mathematical model of lipopolysaccharide signaling through toll-like receptor 4 results in complex insights on preconditioning
- DOI:
10.1016/j.jcrc.2007.10.006 - 发表时间:
2007-12-01 - 期刊:
- 影响因子:
- 作者:
Yekaterina Epshteyn;Beatrice Riviere;David Swigon;Yoram Vodovotz - 通讯作者:
Yoram Vodovotz
Yekaterina Epshteyn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yekaterina Epshteyn', 18)}}的其他基金
Collaborative Research: DMREF: Microstructure by Design: Integrating Grain Growth Experiments, Data Analytics, Simulation, and Theory
合作研究:DMREF:微观结构设计:整合晶粒生长实验、数据分析、模拟和理论
- 批准号:
2118172 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: Towards a Predictive Theory of Microstructure Evolution in Polycrystalline Materials
合作研究:多晶材料微观结构演化的预测理论
- 批准号:
1905463 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Chemotaxis Models in Biology and Texture Development in Materials: Numerical Methods, Analysis, and Modeling
生物学中的趋化模型和材料中的纹理发展:数值方法、分析和建模
- 批准号:
1112984 - 财政年份:2011
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似海外基金
MPS-Ascend: Structure-Preserving Algorithms and Their Applications in Plasma Physics
MPS-Ascend:结构保持算法及其在等离子体物理中的应用
- 批准号:
2213261 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Fellowship Award
"Fast and accurate structure-preserving algorithms in computational scattering, and interdisciplinary modeling and simulation"
“计算散射中快速准确的结构保持算法以及跨学科建模和仿真”
- 批准号:
250211-2012 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual
"Fast and accurate structure-preserving algorithms in computational scattering, and interdisciplinary modeling and simulation"
“计算散射中快速准确的结构保持算法以及跨学科建模和仿真”
- 批准号:
250211-2012 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual
Parallel Structure-Preserving Algorithms: Theory and Numerical Verification
并行结构保持算法:理论与数值验证
- 批准号:
16K17550 - 财政年份:2016
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
"Fast and accurate structure-preserving algorithms in computational scattering, and interdisciplinary modeling and simulation"
“计算散射中快速准确的结构保持算法以及跨学科建模和仿真”
- 批准号:
250211-2012 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual
"Fast and accurate structure-preserving algorithms in computational scattering, and interdisciplinary modeling and simulation"
“计算散射中快速准确的结构保持算法以及跨学科建模和仿真”
- 批准号:
250211-2012 - 财政年份:2014
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual
"Fast and accurate structure-preserving algorithms in computational scattering, and interdisciplinary modeling and simulation"
“计算散射中快速准确的结构保持算法以及跨学科建模和仿真”
- 批准号:
250211-2012 - 财政年份:2013
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual
"Fast and accurate structure-preserving algorithms in computational scattering, and interdisciplinary modeling and simulation"
“计算散射中快速准确的结构保持算法以及跨学科建模和仿真”
- 批准号:
250211-2012 - 财政年份:2012
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual
Structure-Preserving Algorithms for Solving Large Scale Eigenvalue Problems
用于解决大规模特征值问题的结构保持算法
- 批准号:
0611548 - 财政年份:2006
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Structure Preserving Reduced Rank Approximation: Theory, Algorithms and Software
结构保持降阶近似:理论、算法和软件
- 批准号:
9901992 - 财政年份:1999
- 资助金额:
$ 45万 - 项目类别:
Standard Grant














{{item.name}}会员




