AF: Small: Algorithms for Genetics: Epistatic Interactions, Haplotype Assembly, and Selection Signatures
AF:小:遗传学算法:上位相互作用、单倍型组装和选择签名
基本信息
- 批准号:1115206
- 负责人:
- 金额:$ 44.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-10-01 至 2015-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Algorithms for genetics: epistatic interactions, haplotype assembly, and selection signaturesVariation in our DNA (often inherited) can have important functional consequences, including susceptibility to diseases. However, much of variation is due to random drift and may have no functional consequence. Identifying the small subset of variations that are functionally important is key to a deeper understanding of the genetic basis of diseases and other phenotypes, and is the mainstay of statistical genetics and other fields. However, rapidly falling costs of genome sequencing implies that genomes of entire populations will be completely sequenced. The availability of tremendous amounts of genetic data, and the complexity of relations between genotypes and phenotypes changes the nature of inference problems from statistical to computational, and demands the use of algorithmic (combinatorial and machine learning) techniques. In this proposal, the PIs propose specific goals in three broad areas, which involve the use of algorithmic techniques in solving problems in genetics. 1. Epistatic interactions and geometric embedding: Epistatic interactions where two distant loci interact to jointly mediate the phenotype often confound analyses. However, with millions of loci, testing all pairs for interactions is computationally intractable. The PIs propose to develop fast algorithms for this problem. The approach depends upon the development of a metric embedding that maps the genotypes at a locus to a point in a high dimensional Euclidean metric, such that interacting pairs have small Euclidean distances. This metric embedding is novel, and allows the use of geometric algorithms for fast detection of epistasis.2. Haplotype assembly: Haplotyping refers to the separation of the maternal and paternal chromosomes. Successful resolution has great impact in improving the efficacy of genetic association, and in understanding the genetic history of the population. The PIs propose the use of modern strobe-sequencing technologies and single genome amplification to dramatically expand the length of achievable haplotypes. One of the formulated problems maps naturally to connectivity in a new class of random graphs.3. Pooled selection: The PIs propose the identification of regions under genetic selection, using next generation sequencing data. Specifically, the proposed tests work on pooled DNA, and partially sampled DNA, and employ a combination of techniques from population genetics and combinatorial optimization.Broader Impact and Intellectual MeritThe great promise of genomics is that our complete sequence will be an integral part of our medical record, and the major health prognostics will be informed by variation. However, the early research in correlating genotypes and phenotypes is stymied by lack of analysis tools. The problems addressed here are central to the domain and will clearly add to the toolkit of geneticists and biologists. The research also contributes directly to the CISE-CCF mission of developing novel algorithms for Computational Biology, as the proposed problems are uniquely at the intersection of algorithmic and genetics, and open new avenues of research in Computer Science. Dissemination and outreach will continue through the length of the project contributing to the broader impact of this research. It will include invited and contributed presentations, publications, classroom projects, and collaborations. Software will be freely available as source-code, or web-tools, for academic, research and non-commercial purposes adding to the infrastructure of genetic analyses tools.
遗传学算法:上位性相互作用、单倍型组装和选择特征我们DNA中的变异(通常是遗传的)可以产生重要的功能性后果,包括对疾病的易感性。然而,许多变化是由于随机漂移,可能没有功能的后果。识别在功能上重要的变异的小子集是深入理解疾病和其他表型的遗传基础的关键,也是统计遗传学和其他领域的支柱。 然而,基因组测序成本的迅速下降意味着整个种群的基因组将被完全测序。大量遗传数据的可用性以及基因型和表型之间关系的复杂性将推理问题的性质从统计学改变为计算性,并要求使用算法(组合和机器学习)技术。在这份提案中,PI在三个广泛的领域提出了具体的目标,其中包括使用算法技术解决遗传学问题。1.上位相互作用和几何嵌入:上位相互作用,其中两个遥远的基因座相互作用,共同介导的表型往往混淆分析。然而,由于有数百万个基因座,测试所有对的相互作用在计算上是很困难的。PI建议为这个问题开发快速算法。该方法依赖于度量嵌入的发展,映射基因型在一个位点的一个点,在一个高维欧几里德度量,这样的相互作用对具有小的欧几里德距离。这种度量嵌入是新颖的,并且允许使用几何算法来快速检测上位性.单倍型组装:单倍型分型是指母本和父本染色体的分离。成功的解决对于提高遗传关联的效率和理解群体的遗传历史具有重要影响。PI建议使用现代选通测序技术和单基因组扩增来显著扩展可实现的单倍型的长度。其中一个公式化的问题自然地映射到一类新的随机图中的连通性。合并选择:PI建议使用下一代测序数据识别遗传选择下的区域。具体来说,拟议的测试工作对汇集的DNA,部分抽样的DNA,并采用从人口遗传学和组合优化技术的组合。更广泛的影响和智力的优点基因组学的伟大承诺是,我们的完整序列将是我们的医疗记录的一个组成部分,和主要的健康遗传学将由变异告知。然而,早期的基因型和表型相关性研究由于缺乏分析工具而受到阻碍。这里解决的问题是该领域的核心,显然将增加遗传学家和生物学家的工具包。这项研究还直接有助于CISE-CCF开发计算生物学新算法的使命,因为所提出的问题独特地处于算法和遗传学的交叉点,并开辟了计算机科学研究的新途径。传播和推广工作将在整个项目期间继续进行,以扩大这项研究的影响。它将包括邀请和贡献的演讲,出版物,课堂项目和合作。软件将作为源代码或网络工具免费提供,用于学术、研究和非商业目的,增加遗传分析工具的基础设施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vineet Bafna其他文献
Coordinated inheritance of extrachromosomal DNAs in cancer cells
癌细胞中外染色体 DNA 的协同遗传
- DOI:
10.1038/s41586-024-07861-8 - 发表时间:
2024-11-06 - 期刊:
- 影响因子:48.500
- 作者:
King L. Hung;Matthew G. Jones;Ivy Tsz-Lo Wong;Ellis J. Curtis;Joshua T. Lange;Britney Jiayu He;Jens Luebeck;Rachel Schmargon;Elisa Scanu;Lotte Brückner;Xiaowei Yan;Rui Li;Aditi Gnanasekar;Rocío Chamorro González;Julia A. Belk;Zhonglin Liu;Bruno Melillo;Vineet Bafna;Jan R. Dörr;Benjamin Werner;Weini Huang;Benjamin F. Cravatt;Anton G. Henssen;Paul S. Mischel;Howard Y. Chang - 通讯作者:
Howard Y. Chang
Engineered extrachromosomal oncogene amplifications promote tumorigenesis
工程化染色体外癌基因扩增促进肿瘤发生
- DOI:
10.1038/s41586-024-08318-8 - 发表时间:
2024-12-18 - 期刊:
- 影响因子:48.500
- 作者:
Davide Pradella;Minsi Zhang;Rui Gao;Melissa A. Yao;Katarzyna M. Gluchowska;Ylenia Cendon-Florez;Tanmay Mishra;Gaspare La Rocca;Moritz Weigl;Ziqi Jiao;Hieu H. M. Nguyen;Marta Lisi;Mateusz M. Ozimek;Chiara Mastroleo;Kevin Chen;Felix Grimm;Jens Luebeck;Shu Zhang;Andrea Alice Zolli;Eric G. Sun;Bhargavi Dameracharla;Zhengqiao Zhao;Yuri Pritykin;Carlie Sigel;Howard Y. Chang;Paul S. Mischel;Vineet Bafna;Cristina R. Antonescu;Andrea Ventura - 通讯作者:
Andrea Ventura
Deciphering the genetic basis of common diseases by integrated functional annotation of common and rare variants
- DOI:
10.1186/gb-2010-11-s1-i8 - 发表时间:
2010-10-11 - 期刊:
- 影响因子:9.400
- 作者:
Olivier Harismendy;Gaurav Bhatia;Nazli G Rahim;Vikas Bansal;Masakazu Nakano;Michael Scott;Xiaoyun Wang;Colette Dib;Edouard Turlotte;Nathaniel Heintzman;Sarah S Murray;Jean-Francois Deleuze;Jack C Sipe;Bing Ren;Vineet Bafna;Eric J Topol;Kelly A Frazer - 通讯作者:
Kelly A Frazer
A method for tracking cell migration in vivo based on deep learning with target detection
一种基于深度学习目标检测的体内细胞迁移跟踪方法
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Tsubasa Mizugaki;Utkrisht Rajkumar;Kenji Fujimoto;Hironori Shigeta;Shigeto Seno;Yutaka Uchida;Masaru Ishii;Vineet Bafna;Hideo Matsuda - 通讯作者:
Hideo Matsuda
Three-dimensional genome landscape of primary human cancers
原发性人类癌症的三维基因组图谱
- DOI:
10.1038/s41588-025-02188-0 - 发表时间:
2025-05-12 - 期刊:
- 影响因子:29.000
- 作者:
Kathryn E. Yost;Yanding Zhao;King L. Hung;Kaiyuan Zhu;Duo Xu;M. Ryan Corces;Shadi Shams;Bryan H. Louie;Shahab Sarmashghi;Laksshman Sundaram;Jens Luebeck;Stanley Clarke;Ashley S. Doane;Jeffrey M. Granja;Hani Choudhry;Marcin Imieliński;Andrew D. Cherniack;Ekta Khurana;Vineet Bafna;Ina Felau;Jean C. Zenklusen;Peter W. Laird;Christina Curtis;William J. Greenleaf;Howard Y. Chang - 通讯作者:
Howard Y. Chang
Vineet Bafna的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vineet Bafna', 18)}}的其他基金
Collaborative Research: ABI Innovation: Computational population-genetic analysis for detection of soft selective sweeps
合作研究:ABI 创新:用于检测软选择性扫描的计算群体遗传分析
- 批准号:
1458557 - 财政年份:2015
- 资助金额:
$ 44.5万 - 项目类别:
Standard Grant
III: Small: Algorithms for decoding complex patterns of genomic variation
III:小:解码基因组变异复杂模式的算法
- 批准号:
1318386 - 财政年份:2013
- 资助金额:
$ 44.5万 - 项目类别:
Continuing Grant
III-CXT-Small: Algorithmic strategies for genotype-phenotype correlations
III-CXT-Small:基因型-表型相关性的算法策略
- 批准号:
0810905 - 财政年份:2008
- 资助金额:
$ 44.5万 - 项目类别:
Standard Grant
Novel Algorithms for NcRNA Discovery and RNA Structure Prediction
NcRNA 发现和 RNA 结构预测的新算法
- 批准号:
0516440 - 财政年份:2005
- 资助金额:
$ 44.5万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:
2347322 - 财政年份:2024
- 资助金额:
$ 44.5万 - 项目类别:
Standard Grant
AF: Small: Communication-Aware Algorithms for Dynamic Allocation of Heterogeneous Resources
AF:小型:用于异构资源动态分配的通信感知算法
- 批准号:
2335187 - 财政年份:2024
- 资助金额:
$ 44.5万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:
2347321 - 财政年份:2024
- 资助金额:
$ 44.5万 - 项目类别:
Standard Grant
AF: Small: New Challenges and Approaches in Clustering Algorithms
AF:小:聚类算法的新挑战和方法
- 批准号:
2311397 - 财政年份:2023
- 资助金额:
$ 44.5万 - 项目类别:
Standard Grant
AF: Small: RUI: Toward High-Performance Block Krylov Subspace Algorithms for Solving Large-Scale Linear Systems
AF:小:RUI:用于求解大规模线性系统的高性能块 Krylov 子空间算法
- 批准号:
2327619 - 财政年份:2023
- 资助金额:
$ 44.5万 - 项目类别:
Standard Grant
SHF: AF: Small: Algorithms and a Code Generator for Faster Stencil Computations
SHF:AF:Small:用于更快模板计算的算法和代码生成器
- 批准号:
2318633 - 财政年份:2023
- 资助金额:
$ 44.5万 - 项目类别:
Standard Grant
NSF-BSF: AF: Small: Algorithms for Graph-Based Codes
NSF-BSF:AF:小型:基于图形的代码算法
- 批准号:
2133154 - 财政年份:2022
- 资助金额:
$ 44.5万 - 项目类别:
Standard Grant
AF: Small: Towards New Relaxations for Online Algorithms
AF:小:在线算法的新放松
- 批准号:
2224718 - 财政年份:2022
- 资助金额:
$ 44.5万 - 项目类别:
Standard Grant














{{item.name}}会员




