Hybridizable discontinuous Galerkin methods for higher order partial differential equations
高阶偏微分方程的可混合间断伽辽金法
基本信息
- 批准号:1115280
- 负责人:
- 金额:$ 13.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In order to understand, predict, and eventually control a complex natural or manufactured physical system, one often models it using partial differential equations. Nevertheless, in practically all models arising from complex modern applications, obtaining an exact solution in the form of basic mathematical functions is not a possibility. Thus, a practitioner must resort to what is called a numerical method for computing an approximate solution to the partial differential equations defining the model. Numerical simulations thus play a key role in modern science and technology. They also allow significant reduction in manufacturing costs by designing and testing various models merely on computers before actually building a physical model. Successful computation of approximate solutions to practical problems of interest in part depends on advances in computer technology. However, more importantly, it hinges upon the design, analysis, and implementation of efficient, reliable, accurate, and robust numerical methods.One of the most widely used family of numerical methods is the finite element method, which has become an indispensable tool for simulation of a wide variety of phenomena arising in science and engineering such as the design of aircrafts, automobiles, bridges, oil platforms, and more recently of nano-materials, to name a few. Discontinuous Galerkin (DG) methods constitute a special subfamily of finite element methods which are known for their stability, robustness, versatility, and high-order accuracy.In this project, the PI will develop and analyze hybridizable DG (HDG) methods for problems arising in structural mechanics. Particular emphasis will be on devising such methods for problems dealing with thin domains such as beams, plates, and shells, since they pose challenges which have attracted much interest in the scientific computing community. The hybridization procedure allows the elimination of many of the globally coupled degrees of freedom rendering the linear system significantly smaller than that of its classical DG counterparts. The resulting HDG methods enjoy desirable properties of DG methods such as stability, high-order convergence, and robustness, and in certain cases they exhibit even better properties. Mathematical analysis of such phenomena is also a part of the proposed project. This project consists of several parts: HDG methods for Naghdi arches; biharmonic problems; Reissner-Mindlin plates; and fourth-order time-dependent problems. Notwithstanding each of these steps is worthy of interest in its own right, one of the ultimate goals of the PI is to devise efficient numerical methods for shell models, and each one of the above steps constitute a stepping stone towards this goal.
为了理解、预测并最终控制复杂的自然或人工物理系统,人们通常使用偏微分方程对其进行建模。然而,实际上,在复杂的现代应用中产生的所有模型中,不可能以基本数学函数的形式获得精确解。因此,从业者必须求助于所谓的数值方法来计算定义模型的偏微分方程的近似解。因此,数值模拟在现代科学技术中发挥着关键作用。它们还允许在实际构建物理模型之前仅在计算机上设计和测试各种模型,从而显著降低制造成本。成功地计算出感兴趣的实际问题的近似解部分取决于计算机技术的进步。然而,更重要的是,它取决于高效、可靠、准确和鲁棒的数值方法的设计、分析和实现。最广泛使用的数值方法之一是有限元方法,它已成为模拟各种科学和工程现象的不可或缺的工具,如飞机、汽车、桥梁、石油平台的设计,以及最近的纳米材料,仅举几例。不连续Galerkin(DG)方法是有限元方法的一个特殊的子族,以其稳定性、鲁棒性、通用性和高阶精度而闻名。在本项目中,PI将开发和分析用于结构力学问题的杂交DG(HDG)方法。特别强调将设计这样的方法处理薄域,如梁,板和壳的问题,因为他们提出的挑战,吸引了科学计算界的极大兴趣。杂交程序允许消除许多的全球耦合度的自由度,使线性系统显着小于其经典DG同行。所得到的HDG方法享有理想的性能DG方法,如稳定性,高阶收敛性和鲁棒性,在某些情况下,他们表现出更好的性能。对这种现象的数学分析也是拟议项目的一部分。该项目由几个部分组成:Naghdi拱的HDG方法;双调和问题; Reissner-Mindlin板;和四阶时变问题。尽管这些步骤中的每一个都值得关注,PI的最终目标之一是为壳模型设计有效的数值方法,而上述每一个步骤都是实现这一目标的垫脚石。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fatih Celiker其他文献
Hybridizable Discontinuous Galerkin Methods for Timoshenko Beams
Timoshenko 梁的可杂交间断伽辽金方法
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:2.5
- 作者:
Fatih Celiker;Bernardo Cockburn;Ke Shi - 通讯作者:
Ke Shi
Nonlocal operators with local boundary conditions in higher dimensions
高维中具有局部边界条件的非局部算子
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:1.7
- 作者:
Burak Aksoylu;Fatih Celiker;Orsan Kilicer - 通讯作者:
Orsan Kilicer
Adaptive stabilization of discontinuous Galerkin methods for nonlinear elasticity: Motivation, formulation, and numerical examples
非线性弹性不连续伽辽金方法的自适应稳定:动机、公式和数值示例
- DOI:
10.1016/j.cma.2008.02.020 - 发表时间:
2008 - 期刊:
- 影响因子:7.2
- 作者:
A. T. Eyck;Fatih Celiker;A. Lew - 通讯作者:
A. Lew
Locking-Free Optimal Discontinuous Galerkin Methods for a Naghdi-Type Arch Model
Naghdi型拱形模型的无锁最优间断伽辽金方法
- DOI:
10.1007/s10915-011-9532-0 - 发表时间:
2012 - 期刊:
- 影响因子:2.5
- 作者:
Fatih Celiker;Li Fan;Shenmin Zhang;Zhimin Zhang - 通讯作者:
Zhimin Zhang
Correction to: Nonlocal operators with local boundary conditions in higher dimensions
- DOI:
10.1007/s10444-018-9632-6 - 发表时间:
2018-09-14 - 期刊:
- 影响因子:2.100
- 作者:
Burak Aksoylu;Fatih Celiker;Orsan Kilicer - 通讯作者:
Orsan Kilicer
Fatih Celiker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
具有粘性逆Lax-Wendroff边界处理和紧凑WENO限制器的自适应网格local discontinuous Galerkin方法
- 批准号:11872210
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
非连续谱高频雷达信号的理论和应用研究
- 批准号:60602039
- 批准年份:2006
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Conservative discontinuous Galerkin methods with implicit penalty parameters and multiscale hybridizable discontinuous Galerkin methods for PDEs
具有隐式惩罚参数的保守间断伽辽金方法和偏微分方程的多尺度可杂交间断伽辽金方法
- 批准号:
2309670 - 财政年份:2023
- 资助金额:
$ 13.55万 - 项目类别:
Standard Grant
Efficient Hybridizable Discontinuous Galerkin Methods for Phase Field Fluid Models
用于相场流体模型的高效可杂交不连续伽辽金方法
- 批准号:
2208231 - 财政年份:2022
- 资助金额:
$ 13.55万 - 项目类别:
Standard Grant
Efficient Hybridizable Discontinuous Galerkin Methods for Phase Field Fluid Models
用于相场流体模型的高效可杂交不连续伽辽金方法
- 批准号:
2310340 - 财政年份:2022
- 资助金额:
$ 13.55万 - 项目类别:
Standard Grant
LEAPS-MPS: Hybridizable discontinuous Galerkin methods for non-linear integro-differential boundary value problems in magnetic plasma confinement
LEAPS-MPS:磁等离子体约束中非线性积分微分边值问题的混合不连续伽辽金方法
- 批准号:
2137305 - 财政年份:2021
- 资助金额:
$ 13.55万 - 项目类别:
Standard Grant
Analysis of space-time hybridizable discontinuous Galerkin methods for incompressible flow problems on moving domains
动域不可压缩流动问题时空杂化间断伽辽金方法分析
- 批准号:
534997-2019 - 财政年份:2021
- 资助金额:
$ 13.55万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Hybridizable discontinuous Galerkin methods for the Cahn-Hilliard-Navier-Stokes system
Cahn-Hilliard-Navier-Stokes 系统的可杂交间断伽辽金方法
- 批准号:
566831-2021 - 财政年份:2021
- 资助金额:
$ 13.55万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements
Analysis of space-time hybridizable discontinuous Galerkin methods for incompressible flow problems on moving domains
动域不可压缩流动问题时空杂化间断伽辽金方法分析
- 批准号:
534997-2019 - 财政年份:2020
- 资助金额:
$ 13.55万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Divergence-Free Hybridizable Discontinuous Galerkin Methods for the Incompressible Navier-Stokes Equations on Moving Domains and Their Application to Fluid-Structure Interaction
运动域不可压缩纳维-斯托克斯方程的无散杂化间断伽辽金方法及其在流固耦合中的应用
- 批准号:
2012031 - 财政年份:2020
- 资助金额:
$ 13.55万 - 项目类别:
Continuing Grant
Analysis of space-time hybridizable discontinuous Galerkin methods for incompressible flow problems on moving domains
动域不可压缩流动问题时空杂化间断伽辽金方法分析
- 批准号:
534997-2019 - 财政年份:2019
- 资助金额:
$ 13.55万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Modeling and Hybridizable Discontinuous Galerkin Methods for Two-phase Flows in Karstic Geometry
岩溶几何中两相流的建模和可混合间断伽辽金方法
- 批准号:
1912715 - 财政年份:2019
- 资助金额:
$ 13.55万 - 项目类别:
Standard Grant














{{item.name}}会员




