AF: Small: The Traveling Salesman Problem and Lightweight Approximation Algorithms

AF:小:旅行商问题和轻量级近似算法

基本信息

  • 批准号:
    1115256
  • 负责人:
  • 金额:
    $ 35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

The traveling salesman problem (TSP) is easily the most famous problem in discrete optimization. Given a set of n cities and the costs c(i,j) of traveling from city i to city j for all i and j, the goal of the problem is to find the least expensive tour that visits each city exactly once and returns to its starting point. A linear programming relaxation of the problem called the subtour LP is known to give extremely good lower bounds on the length of an optimal tour in practice. Nevertheless, the subtour LP bound is poorly understood from a theoretical point of view. For 30 years it has been known that it is always at least 2/3 times the length of an optimal tour, and it is known that there are instances such that it is at most 3/4 times the length of an optimal tour, but no progress has been made in tightening these bounds. It has been conjectured that the subtour LP is always at least 3/4 times the length of the optimal tour. The goal of this research is to resolve this conjecture. Because this goal is very ambitious, a number of intermediate goals have been proposed. Theoretical computer scientists have intensively studied approximation algorithms for NP-hard problems; these are polynomial-time algorithms that always provide solutions that are provably close to optimal (in terms of some performance guarantee). The main issue driving theoretical work has been improvements in performance guarantee rather than whether the algorithms are implementable or practical. While understanding the limits of approximability is and should be one of the issues that theoretical work advances, one can also explore whether those limits can be reached with algorithms that are less computationally intensive than the ones currently in the literature. We call this the creation of lightweight versions of approximation algorithms. This exploration advances the potential impact of approximation algorithm on practice without losing the theoretical rigor of the field.The intellectual merit of the proposal lies in the possibility of making substantial progress in resolving outstanding problems related to the subtour LP for the traveling salesman problem, and also in making practical some of the outstanding theoretical work in approximation algorithms. The goal of this research lies in moving theoretical and practical studies of optimization problems closer to each other. In the case of the traveling salesman problem, we have a bound that is very good in practice, but we do not understand its theoretical properties. In the case of approximation algorithms, we have some very good theoretical algorithms, but they are often not practical. We would like to understand the theoretical properties of the subtour LP bound for the traveling salesman problem, and to make practical some of the good theoretical work in approximation algorithms.
旅行商问题(TSP)是离散优化中最著名的问题。 给定一组n个城市,对于所有i和j,从城市i到城市j的旅行成本为c(i,j),问题的目标是找到最便宜的旅行,每个城市只访问一次,然后返回起点。一个线性规划松弛的问题,称为子旅游LP是已知的,在实践中给出了非常好的下限的最佳巡回赛的长度。 尽管如此,从理论的角度来看,人们对子巡演LP范围的了解还很有限。 30年来,人们已经知道,它总是至少2/3倍的长度的最佳巡回赛,它是已知的,有这样的情况下,它是最多3/4倍的长度的最佳巡回赛,但没有取得进展,在收紧这些界限。已经证明,子行程LP总是最优行程长度的至少3/4倍。本研究的目的就是解决这个问题。 由于这一目标非常雄心勃勃,因此提出了一些中期目标。理论计算机科学家已经深入研究了NP难问题的近似算法;这些是多项式时间算法,总是提供可证明接近最优的解决方案(在某些性能保证方面)。 推动理论工作的主要问题是性能保证的改进,而不是算法是否可实现或实用。 虽然理解近似性的极限是并且应该是理论工作进步的问题之一,但人们也可以探索这些极限是否可以通过计算强度低于目前文献中的算法来达到。 我们称之为近似算法的轻量级版本的创建。这种探索推进了近似算法对实践的潜在影响,而不失去该领域的理论严谨性,该建议的智力价值在于有可能在解决与旅行商问题的子行程LP相关的突出问题方面取得实质性进展,并使近似算法中的一些突出理论工作切实可行。本研究的目的在于使优化问题的理论和实践研究更加接近。 在旅行商问题的情况下,我们有一个在实践中非常好的界限,但我们不了解它的理论性质。 在近似算法的情况下,我们有一些非常好的理论算法,但它们往往不实用。 我们希望了解旅行商问题的子环LP界的理论性质,并将近似算法中的一些好的理论工作付诸实践。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Williamson其他文献

Factor V Cambridge: a new mutation (Arg306-->Thr) associated with resistance to activated protein C.
剑桥因子 V:与活化蛋白 C 抗性相关的新突变 (Arg306-->Thr)。
  • DOI:
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    20.3
  • 作者:
    David Williamson;K. Brown;R. Luddington;C. Baglin;Trevor Baglin
  • 通讯作者:
    Trevor Baglin
Proton-Pump Inhibitors to Prevent Gastrointestinal Bleeding - An Updated Meta-Analysis.
质子泵抑制剂预防胃肠道出血 - 更新的荟萃分析。
  • DOI:
    10.1056/evidoa2400134
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ying Wang;S. Parpia;Long Ge;D. Heels;H. Lai;Meisam Abdar Esfahani;Bei Pan;W. Alhazzani;Stefan Schandelmaier;Francois Lauzier;Y. Arabi;Jeffrey F Barletta;Adam M Deane;S. Finfer;David Williamson;S. Kanji;M. H. Møller;Anders Perner;M. Krag;P. Young;Joanna C Dionne;Naomi Hammond;Zhikang Ye;Quazi Ibrahim;Deborah Cook
  • 通讯作者:
    Deborah Cook
A Correlational Study Assessing the Relationships among Information Technology Project Complexity, Project Complication, and Project Success.
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Williamson
  • 通讯作者:
    David Williamson
The PROMISING Project: A Pilot Study to Improve Geriatric Care Through a Pharmacist-Led Psychotropic Stewardship Program
有前途的项目:通过药剂师主导的精神药物管理计划改善老年护理的试点研究
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Marie d'Amours;Farah Ettis;Lauriane Ginefri;Johnny Lim;Angela;Jennifer Fontaine;Dana Wazzan;David Williamson;Vincent Dagenais
  • 通讯作者:
    Vincent Dagenais
Consistency checks to improve measurement with the Hamilton Rating Scale for Anxiety (HAM-A)
使用汉密尔顿焦虑量表(HAM-A)进行一致性检查以提高测量结果
  • DOI:
    10.1016/j.jad.2023.01.029
  • 发表时间:
    2023-03-15
  • 期刊:
  • 影响因子:
    4.900
  • 作者:
    Jonathan Rabinowitz;Janet B.W. Williams;Nanco Hefting;Ariana Anderson;Brianne Brown;Dong Jing Fu;Bashkim Kadriu;Alan Kott;Atul Mahableshwarkar;Jan Sedway;David Williamson;Christian Yavorsky;Nina R. Schooler
  • 通讯作者:
    Nina R. Schooler

David Williamson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Williamson', 18)}}的其他基金

AF: SMALL: Topics in Bridging Continuous and Discrete Optimization
AF:SMALL:桥接连续优化和离散优化的主题
  • 批准号:
    2007009
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
AF: Small: Looking Under Rocks: A Search for a Provably Stronger TSP Relaxation
AF:小:寻找岩石下:寻找可证明更强的 TSP 弛豫
  • 批准号:
    1908517
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
AF: EAGER: Approximation algorithms for the traveling salesman problem
AF:EAGER:旅行商问题的近似算法
  • 批准号:
    1552831
  • 财政年份:
    2015
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Contemporary Issues in Network Design
网络设计的当代问题
  • 批准号:
    0830519
  • 财政年份:
    2008
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Resolving Anomalies in Approximation Algorithms
解决近似算法中的异常
  • 批准号:
    0514628
  • 财政年份:
    2005
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Mathematical Sciences:Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
  • 批准号:
    9305954
  • 财政年份:
    1993
  • 资助金额:
    $ 35万
  • 项目类别:
    Fellowship Award
Interdisciplinary Research on a Watershed- Estuarine System Of the Chesapeake Bay
切萨皮克湾流域-河口系统的跨学科研究
  • 批准号:
    7203361
  • 财政年份:
    1971
  • 资助金额:
    $ 35万
  • 项目类别:
    Interagency Agreement

相似国自然基金

昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
  • 批准号:
    32000033
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
  • 批准号:
    31972324
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
  • 批准号:
    81900988
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
  • 批准号:
    31870821
  • 批准年份:
    2018
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
  • 批准号:
    31802058
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
  • 批准号:
    31772128
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
  • 批准号:
    81704176
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
  • 批准号:
    91640114
  • 批准年份:
    2016
  • 资助金额:
    85.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Powering Small Craft with a Novel Ammonia Engine
用新型氨发动机为小型船只提供动力
  • 批准号:
    10099896
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Collaborative R&D
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
  • 批准号:
    AH/X011747/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Research Grant
Fragment to small molecule hit discovery targeting Mycobacterium tuberculosis FtsZ
针对结核分枝杆菌 FtsZ 的小分子片段发现
  • 批准号:
    MR/Z503757/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Research Grant
Bacteriophage control of host cell DNA transactions by small ORF proteins
噬菌体通过小 ORF 蛋白控制宿主细胞 DNA 交易
  • 批准号:
    BB/Y004426/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Research Grant
Windows for the Small-Sized Telescope (SST) Cameras of the Cherenkov Telescope Array (CTA)
切伦科夫望远镜阵列 (CTA) 小型望远镜 (SST) 相机的窗口
  • 批准号:
    ST/Z000017/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Research Grant
CSR: Small: Leveraging Physical Side-Channels for Good
CSR:小:利用物理侧通道做好事
  • 批准号:
    2312089
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
  • 批准号:
    2317251
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
  • 批准号:
    2332922
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
  • 批准号:
    2329908
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
NeTS: Small: ML-Driven Online Traffic Analysis at Multi-Terabit Line Rates
NeTS:小型:ML 驱动的多太比特线路速率在线流量分析
  • 批准号:
    2331111
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了