RUI: Theory and simulations of knotting in physical and biological systems ranging from proteins to glueballs

RUI:从蛋白质到胶球的物理和生物系统中打结的理论和模拟

基本信息

  • 批准号:
    1115722
  • 负责人:
  • 金额:
    $ 17.62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

Entanglement is seen at every scale in the physical world, from microscopic enzymes manipulating DNA to human-scale garden hoses to relativistic jets spanning light years in distance. The function of these entanglements is related to their physical form. In this proposed project, the PI, collaborators, and undergraduate students study the physical form of knotted tubes. Specifically, the proposed project has two main goals: 1) to model motions of thick tubes in contact with each other, and 2) to rigorously study knotting within open strands. Knot configurations in a tight state have been used to model the relative speed of knotted DNA loops in gel electrophoresis, to predict the slope of the DNA double helix, and to classify the structure of the sub-atomic glueball states. The PI and collaborators have written computer code to tighten knot configurations. This code, and its corresponding theory, has led to a general model for handling the problem of self-contact of tube-like objects. The PI and collaborators will extend the model so that it can be applied to other physical systems. The second portion of the project concerns studying knotting in open chains. The discovery of knotted proteins spurred the recent interest in classifying knotting within open chains. The PI and collaborators will focus on the entanglement stability of the knotting within the chains, i.e. the resistance of the geometry of the configuration to change its knotting properties. Protein chains will be compared to random chains to understand the role that knotting plays in the life of the proteins.When one thinks of a knot, it is usually made out of rope. The rope has physical properties, such as thickness, that limits how it can be manipulated. For example, one cannot pass a rope through itself without cutting the rope. When one ties a knot in a piece of rope and pulls it tight, the surface of the rope comes in contact with itself and the rope slides naturally along the contacts. Modeling these motions along contacts is difficult but has applications in many fields, such as the study of elastic rods and computer graphics. The PI and collaborators have coded a knot tightening algorithm that deflects motions across self-contacts for rope-like materials in a mathematically sound, and physically intuitive fashion. In the first portion of this project, this algorithm will be extended to study other physical systems with self-contact. Some possible applications include testing the effect of a bullet's impact on woven materials forming bullet-proof vests and analyzing the security of boating, fishing, and surgical knots. The type of knots typically studied by mathematicians are closed loops with no free ends, in contrast to the knots we see in everyday life, such as in shoelaces and garden hoses, that have free ends. However, the importance of studying knotting in objects with free ends is becoming increasingly clear. For example, some proteins contain these types of knot, although the function of the knots is still being debated. Since proteins are involved in essentially every process in cells, knots would seem to be an unnecessary obstruction as the protein folds in and out of its active state. Knotting in open strands is not well understood from a mathematical perspective, but should coincide with one's intuitive notion of what is and what is not "knotted". A "knotted" strand should be stable so that, for example, a person's shoes do not come untied. The PI, collaborators, and undergraduate students will study notions of knotting in open strands and the relationship between the spatial structure of the strand and its stability. Ultimately, this will lead to insights into knotting within proteins. In addition to the scientific goals, this grant has broad educational objectives. Undergraduate students will be directly supported by the grant, gaining critical experience in the research process and presenting their results at professional conferences. The PI will continue to be involved in connecting with students, non-specialists, and specialists from different fields through talks and organizing interdisciplinary conferences.
在物理世界的每一个尺度上都可以看到纠缠,从操纵DNA的微观酶到人类尺度的花园软管,再到跨越光年距离的相对论性喷流。这些纠缠的功能与它们的物理形式有关。在这个项目中,PI,合作者和本科生研究打结管的物理形式。具体来说,拟议的项目有两个主要目标:1)模拟彼此接触的粗管的运动,2)严格研究开放股线内的打结。 在一个紧张的状态下的结配置已被用来模拟凝胶电泳中的DNA打结环的相对速度,预测的DNA双螺旋的斜率,并分类的亚原子胶球状态的结构。 PI和合作者已经编写了计算机代码来收紧结配置。 这个代码及其相应的理论,导致了一个通用的模型来处理问题的自我接触的管状物体。 PI和合作者将扩展该模型,使其可以应用于其他物理系统。 该项目的第二部分涉及研究开链打结。 打结蛋白的发现激发了最近对开链内打结分类的兴趣。 PI和合作者将专注于链内打结的缠结稳定性,即构型的几何形状改变其打结特性的阻力。 我们将蛋白质链与随机链进行比较,以了解打结在蛋白质生命中所扮演的角色。 绳子的物理特性,如厚度,限制了它的操作方式。 例如,一根绳子不能穿过自己而不切断绳子。 当一个人在一根绳子上打一个结并把它拉紧时,绳子的表面与它自己接触,绳子自然地沿着接触点滑动。 模拟这些运动沿着接触是困难的,但在许多领域,如研究弹性杆和计算机图形学的应用。PI和合作者已经编码了一种结收紧算法,该算法以数学上合理和物理上直观的方式偏转绳索状材料的自接触运动。 在这个项目的第一部分中,这个算法将被扩展到研究其他具有自接触的物理系统。一些可能的应用包括测试子弹对形成防弹背心的编织材料的影响,以及分析划船,钓鱼和外科手术结的安全性。 数学家通常研究的结的类型是没有自由端的闭合环,与我们在日常生活中看到的结形成对比,例如鞋带和花园软管,有自由端。 然而,研究具有自由端的物体中的打结的重要性变得越来越明显。 例如,一些蛋白质含有这些类型的结,尽管结的功能仍在争论中。由于蛋白质基本上参与了细胞中的每一个过程,因此当蛋白质折叠进入和脱离其活性状态时,结似乎是一个不必要的障碍。 从数学的角度来看,开放链中的打结并没有得到很好的理解,但应该与一个人对什么是“打结”和什么不是“打结”的直观概念相一致。 “打结”的线应该是稳定的,例如,一个人的鞋子不会解开。PI、合作者和本科生将学习开放链打结的概念以及链的空间结构与其稳定性之间的关系。 最终,这将导致对蛋白质内打结的深入了解。 除了科学目标外,这项赠款还有广泛的教育目标。本科生将直接获得补助金的支持,在研究过程中获得关键经验,并在专业会议上展示他们的成果。 PI将继续通过会谈和组织跨学科会议参与与学生,非专家和来自不同领域的专家的联系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric Rawdon其他文献

Eric Rawdon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric Rawdon', 18)}}的其他基金

RUI: Entanglements in Proteins and Other Macromolecular Chains
RUI:蛋白质和其他大分子链中的缠结
  • 批准号:
    1720342
  • 财政年份:
    2018
  • 资助金额:
    $ 17.62万
  • 项目类别:
    Standard Grant
RUI: Knotting transitions in physical systems
RUI:在物理系统中进行转换
  • 批准号:
    1418869
  • 财政年份:
    2014
  • 资助金额:
    $ 17.62万
  • 项目类别:
    Standard Grant
RUI: Structure of Entanglement in Macromolecules
RUI:大分子中的缠结结构
  • 批准号:
    0810415
  • 财政年份:
    2008
  • 资助金额:
    $ 17.62万
  • 项目类别:
    Standard Grant
RUI: Characterizing Energy-Minimizing Knots
RUI:表征能量最小化结
  • 批准号:
    0311010
  • 财政年份:
    2003
  • 资助金额:
    $ 17.62万
  • 项目类别:
    Standard Grant
Knot Complexity and the Structure of Polygonal Knot Space
结复杂度与多边形结空间的结构
  • 批准号:
    0296098
  • 财政年份:
    2001
  • 资助金额:
    $ 17.62万
  • 项目类别:
    Standard Grant
Knot Complexity and the Structure of Polygonal Knot Space
结复杂度与多边形结空间的结构
  • 批准号:
    0074315
  • 财政年份:
    2000
  • 资助金额:
    $ 17.62万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Numerical simulations of lattice field theory
晶格场论的数值模拟
  • 批准号:
    2902259
  • 财政年份:
    2024
  • 资助金额:
    $ 17.62万
  • 项目类别:
    Studentship
Stochastic Modeling of Turbulence over Rough Walls: Theory, Experiments, and Simulations
粗糙壁上湍流的随机建模:理论、实验和模拟
  • 批准号:
    2412025
  • 财政年份:
    2024
  • 资助金额:
    $ 17.62万
  • 项目类别:
    Standard Grant
Collaborative Research: WoU-MMA: Coherent radio and x-ray precursor transients to gravitational wave events: Simulations in general relativity and kinetic theory
合作研究:WoU-MMA:引力波事件的相干射电和 X 射线前兆瞬变:广义相对论和动力学理论的模拟
  • 批准号:
    2307395
  • 财政年份:
    2023
  • 资助金额:
    $ 17.62万
  • 项目类别:
    Standard Grant
Collaborative Research: WoU-MMA: Coherent radio and x-ray precursor transients to gravitational wave events: Simulations in general relativity and kinetic theory
合作研究:WoU-MMA:引力波事件的相干射电和 X 射线前兆瞬变:广义相对论和动力学理论的模拟
  • 批准号:
    2307394
  • 财政年份:
    2023
  • 资助金额:
    $ 17.62万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Theory-infused Neural Network (TinNet) for Nonadiabatic Molecular Simulations
合作研究:CDS
  • 批准号:
    2245402
  • 财政年份:
    2023
  • 资助金额:
    $ 17.62万
  • 项目类别:
    Standard Grant
Novel Phases of Quantum Matter in Numerical Simulations, Field Theory and Materials
数值模拟、场论和材料中量子物质的新相
  • 批准号:
    2312742
  • 财政年份:
    2023
  • 资助金额:
    $ 17.62万
  • 项目类别:
    Continuing Grant
Collaborative Research: CDS&E: Theory-infused Neural Network (TinNet) for Nonadiabatic Molecular Simulations
合作研究:CDS
  • 批准号:
    2245403
  • 财政年份:
    2023
  • 资助金额:
    $ 17.62万
  • 项目类别:
    Standard Grant
CAREER: Efficient Uncertainty Quantification in Turbulent Combustion Simulations: Theory, Algorithms, and Computations
职业:湍流燃烧模拟中的高效不确定性量化:理论、算法和计算
  • 批准号:
    2143625
  • 财政年份:
    2022
  • 资助金额:
    $ 17.62万
  • 项目类别:
    Continuing Grant
Theory and Simulations of Photonic Waveguide Quantum Electrodynamic Circuits
光子波导量子电动电路的理论与仿真
  • 批准号:
    569953-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 17.62万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Complementing next generation microfluidic bioelectrochemical systems with electrochemical theory and simulations
用电化学理论和模拟补充下一代微流体生物电化学系统
  • 批准号:
    577281-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 17.62万
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了