RUI: Knotting transitions in physical systems
RUI:在物理系统中进行转换
基本信息
- 批准号:1418869
- 负责人:
- 金额:$ 19.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
From microscopic DNA to massive solar flares, string-like objects are replete in nature at every scale. These objects can be entangled and transition between different types of knots. Sometimes nature needs to eliminate this knotting, such as when enzymes called type II topoisomerases cut and reattach strands of DNA to release interlinking during replication. These type II topoisomerases are targets for some chemotherapy drugs, as well as the antibiotic Cipro which is used to treat anthrax poisoning. At other times, knotting is created for a purpose, such as in the folding of some proteins into their functional knotted native state. While the exact function of the knotting in these proteins is unknown, determining the function could make it possible to manipulate proteins or design new proteins for medical applications. At still other times, changes in knotting are the product of natural deterioration. For example, as sub-atomic glueball particles decay through their lifetimes, they change between different types of knots. Indeed, knotting in nature is a dynamic process and the transitions between different types of knots reveal properties of the physical systems. In this project, the PI, a multi-disciplinary group of collaborators, and undergraduate students study knotting transitions for topoisomerase II, proteins, and glueballs to gain insights into the role of knotting in these systems. This project has broad educational objectives. Several undergraduate students will be supported directly by the grant. They will be trained by the PI and contribute to the projects, gaining both content knowledge and experience in the research process. The students will participate in professional meetings and disseminate their findings in talks and posters. These research experiences are essential in training the next generation of science and mathematics educators, researchers, and practitioners. To reach a wide-audience, the PI will continue to be active in giving presentations to students, non-specialists, and multi-disciplinary audiences. The results will be published in mathematics and science journals. The PI will organize interdisciplinary conference sessions to bring together scientists from traditionally disparate fields and create new interdisciplinary collaborations with researchers across the world. In addition, the research results, data, and software generated as a part of this grant will be made publicly available via the world wide web.While the mathematical study of knotting has focused traditionally on closed loops, much of the knotting in nature occurs in objects with free ends (i.e. open chains). This project will establish a firm understanding of open knotted structures, including knotted substructures within open chains and closed loops. This knowledge will be applied to classify the knotting in proteins and the data will be made publicly available. Relationships between knotting, geometric structure, and the amino acid sequence in knotted proteins will be determined to establish the function of the knotting in knotted proteins. Modeling knotting transitions due to the action of type II topoisomerases will lead to a better understanding of their effectiveness in untangling DNA strands. A similar analysis will be used to determine how subatomic glueballs decay through knotting. Together, these projects will reveal fundamental insights into knotting in nature. More specifically, the main objectives of this grant are to 1) decompose complicated knots into their essential elements, 2) reveal the function of knotting in knotted proteins, 3) determine where type II topoisomerases perform their cutting and reattaching action, and 4) understand the decaying process in glueballs. A combination of new and established models and computer applications will be used to analyze these physical systems. In addition to the scientific goals, this project has broad educational objectives. Several undergraduate students will be supported directly by the grant. They will be trained by the PI and contribute to the projects, gaining both content knowledge and experience in the research process. The students will participate in professional meetings and disseminate their findings in talks and posters. These research experiences are essential in training the next generation of science and mathematics educators, researchers, and practitioners. To reach a wide-audience, the PI will continue to be active in giving presentations to students, non-specialists, and multi-disciplinary audiences. The results will be published in mathematics and science journals. The PI will organize interdisciplinary conference sessions to bring together scientists from traditionally disparate fields and create new interdisciplinary collaborations with researchers across the world. In addition, the research results, data, and software generated as a part of this grant will be made publicly available via the world wide web.
从微观的DNA到大规模的太阳耀斑,弦状物体在自然界中的每一个尺度上都很丰富。这些物体可以纠缠在一起,并在不同类型的结之间过渡。有时,自然界需要消除这种打结,例如当称为II型拓扑异构酶的酶切割并重新连接DNA链以在复制过程中释放相互连接时。 这些II型拓扑异构酶是一些化疗药物以及用于治疗炭疽中毒的抗生素Cipro的靶点。 在其他时候,打结是出于某种目的而产生的,例如将一些蛋白质折叠成其功能性打结的天然状态。 虽然这些蛋白质中打结的确切功能尚不清楚,但确定功能可能使操纵蛋白质或设计用于医学应用的新蛋白质成为可能。在其他时候,打结的变化是自然退化的产物。 例如,当亚原子胶球粒子在其寿命中衰变时,它们会在不同类型的结之间变化。 事实上,自然界中的打结是一个动态过程,不同类型的结之间的转换揭示了物理系统的特性。 在这个项目中,PI,一个多学科的合作者小组,和本科生研究拓扑异构酶II,蛋白质和胶球的打结转换,以深入了解打结在这些系统中的作用。该项目具有广泛的教育目标。一些本科生将直接得到赠款的支持。他们将接受PI的培训,并为项目做出贡献,在研究过程中获得内容知识和经验。 学生将参加专业会议,并在讲座和海报中传播他们的发现。这些研究经验对于培养下一代科学和数学教育工作者、研究人员和从业人员至关重要。为了吸引广泛的受众,PI将继续积极向学生、非专业人士和多学科受众进行演讲。研究结果将发表在数学和科学期刊上。PI将组织跨学科会议,将来自传统不同领域的科学家聚集在一起,并与世界各地的研究人员建立新的跨学科合作。此外,研究成果、数据和软件也将通过万维网公开发布。虽然打结的数学研究传统上集中在闭合环上,但大部分自然中的打结都发生在具有自由端的物体上(即开链)。这个项目将建立一个开放的打结结构,包括开链和闭环内打结的子结构的坚定的理解。这些知识将被应用于对蛋白质中的打结进行分类,数据将公开提供。将确定打结蛋白质中打结、几何结构和氨基酸序列之间的关系,以建立打结蛋白质中打结的功能。由于II型拓扑异构酶的作用,建模打结转换将导致更好地了解其在解开DNA链的有效性。类似的分析将用于确定亚原子胶球如何通过打结而衰变。总之,这些项目将揭示自然界打结的基本见解。 更具体地说,这项资助的主要目标是1)将复杂的结分解为它们的基本元素,2)揭示结蛋白质中的结的功能,3)确定II型拓扑异构酶在哪里执行切割和重新附着动作,以及4)了解胶球中的腐烂过程。新的和建立的模型和计算机应用程序的组合将被用来分析这些物理系统。 除了科学目标外,该项目还有广泛的教育目标。一些本科生将直接得到赠款的支持。他们将接受PI的培训,并为项目做出贡献,在研究过程中获得内容知识和经验。 学生将参加专业会议,并在讲座和海报中传播他们的发现。这些研究经验对于培养下一代科学和数学教育工作者、研究人员和从业人员至关重要。为了吸引广泛的受众,PI将继续积极向学生、非专业人士和多学科受众进行演讲。研究结果将发表在数学和科学期刊上。PI将组织跨学科会议,将来自传统不同领域的科学家聚集在一起,并与世界各地的研究人员建立新的跨学科合作。此外,研究成果,数据和软件作为该补助金的一部分将通过万维网公开提供。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Open knots
开结
- DOI:10.1201/9781138298217
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Dorier, Julien;Goundaroulis, Dimos;Rawdon, Eric J;Stasiak, Andrzej
- 通讯作者:Stasiak, Andrzej
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Rawdon其他文献
Eric Rawdon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Rawdon', 18)}}的其他基金
RUI: Entanglements in Proteins and Other Macromolecular Chains
RUI:蛋白质和其他大分子链中的缠结
- 批准号:
1720342 - 财政年份:2018
- 资助金额:
$ 19.05万 - 项目类别:
Standard Grant
RUI: Theory and simulations of knotting in physical and biological systems ranging from proteins to glueballs
RUI:从蛋白质到胶球的物理和生物系统中打结的理论和模拟
- 批准号:
1115722 - 财政年份:2011
- 资助金额:
$ 19.05万 - 项目类别:
Continuing Grant
RUI: Structure of Entanglement in Macromolecules
RUI:大分子中的缠结结构
- 批准号:
0810415 - 财政年份:2008
- 资助金额:
$ 19.05万 - 项目类别:
Standard Grant
RUI: Characterizing Energy-Minimizing Knots
RUI:表征能量最小化结
- 批准号:
0311010 - 财政年份:2003
- 资助金额:
$ 19.05万 - 项目类别:
Standard Grant
Knot Complexity and the Structure of Polygonal Knot Space
结复杂度与多边形结空间的结构
- 批准号:
0296098 - 财政年份:2001
- 资助金额:
$ 19.05万 - 项目类别:
Standard Grant
Knot Complexity and the Structure of Polygonal Knot Space
结复杂度与多边形结空间的结构
- 批准号:
0074315 - 财政年份:2000
- 资助金额:
$ 19.05万 - 项目类别:
Standard Grant
相似海外基金
Explorations in Entanglement and Knotting in Low-Dimensional Topology
低维拓扑中纠缠与打结的探索
- 批准号:
2204148 - 财政年份:2022
- 资助金额:
$ 19.05万 - 项目类别:
Standard Grant
A Geometric Approach to Simulating Knotting and Entanglement of Slender Objects
模拟细长物体打结和缠结的几何方法
- 批准号:
RGPIN-2021-03733 - 财政年份:2022
- 资助金额:
$ 19.05万 - 项目类别:
Discovery Grants Program - Individual
A Geometric Approach to Simulating Knotting and Entanglement of Slender Objects
模拟细长物体打结和缠结的几何方法
- 批准号:
RGPIN-2021-03733 - 财政年份:2021
- 资助金额:
$ 19.05万 - 项目类别:
Discovery Grants Program - Individual
Random Knotting and Lattice Paths
随机结和网格路径
- 批准号:
6272-2013 - 财政年份:2017
- 资助金额:
$ 19.05万 - 项目类别:
Discovery Grants Program - Individual
Random Knotting and Lattice Paths
随机结和网格路径
- 批准号:
6272-2013 - 财政年份:2016
- 资助金额:
$ 19.05万 - 项目类别:
Discovery Grants Program - Individual
Random Knotting and Lattice Paths
随机结和网格路径
- 批准号:
6272-2013 - 财政年份:2015
- 资助金额:
$ 19.05万 - 项目类别:
Discovery Grants Program - Individual
Random Knotting and Lattice Paths
随机结和网格路径
- 批准号:
6272-2013 - 财政年份:2014
- 资助金额:
$ 19.05万 - 项目类别:
Discovery Grants Program - Individual
Random Knotting and Lattice Paths
随机结和网格路径
- 批准号:
6272-2013 - 财政年份:2013
- 资助金额:
$ 19.05万 - 项目类别:
Discovery Grants Program - Individual
Study on Programmable Rope Knotting Robot System
可编程绳结机器人系统的研究
- 批准号:
24240034 - 财政年份:2012
- 资助金额:
$ 19.05万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
RUI: Theory and simulations of knotting in physical and biological systems ranging from proteins to glueballs
RUI:从蛋白质到胶球的物理和生物系统中打结的理论和模拟
- 批准号:
1115722 - 财政年份:2011
- 资助金额:
$ 19.05万 - 项目类别:
Continuing Grant














{{item.name}}会员




