RUI: Entanglements in Proteins and Other Macromolecular Chains

RUI:蛋白质和其他大分子链中的缠结

基本信息

  • 批准号:
    1720342
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-15 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Proteins are molecular chains which perform many of the cellular processes that sustain life. For a protein to perform its function, the protein must "fold" into what is called its "native state". While the folding process is not directly observable, modern experimental techniques make it possible to observe the 3D structure of proteins in their native states. Researchers have found knots (like knots in one's shoes), links (like the Olympic rings), and other types of entanglements in the native states of many proteins. Furthermore, it has been shown that the entanglements in these proteins have resisted evolution, suggesting that the entanglements are critical to the function of the proteins and not just a cosmic accident. It is unclear why entanglements (which add complexity to the folding process) would be advantageous to proteins, especially since the consequences of misfolding a protein can be devastating. For example, misfolded proteins are believed to be related to diseases such as Alzheimer's disease, Parkinson's disease, and Creutzfeldt-Jakob disease (the human analogue of Mad Cow Disease). In addition, proteins linked to HIV, whooping cough, obesity, and other ailments have been shown to contain entanglements. The goal of this project is to develop computational tools and run simulations to gain a deeper understanding of the types of entanglements seen in proteins and other molecular chains. A clear understanding of protein entanglement, and the relationship between entanglement and protein function, will provide insights into human ailments and could be central to the design of the next generation of drugs to battle the ailments.The PI, a multi-disciplinary group of collaborators, and undergraduate researchers will leverage their unique skill set towards two main objectives. First, a number of different techniques have been proposed previously to classify the type of knotting in open curves (such as proteins). In this project, these different methods will be compared, and new efficient algorithms created, to measure the types of knotting in these curves. Second, physical properties of molecular chains affect the structure of entanglements that can be created. For example, molecular chains are often modeled as having some thickness, i.e. there is a thin impenetrable tube about the chain. The group will study how the types of knots and their structures change with differing thickness values. Together, these projects aim to efficiently classify the entanglements in proteins, pinpoint their location, and determine how some physical properties affect the entanglements observed. In addition to the scientific goals, this grant has broad educational objectives. Undergraduate students will be trained by the PI and contribute to the projects, gaining both content knowledge and experience in the research process. The students will participate in professional meetings and disseminate their findings in talks and posters. These research experiences are essential in training the next generation of STEM educators, researchers, and practitioners. To reach a wide audience, the PI will continue to be active in giving presentations to students, non-specialists, and multidisciplinary groups, both domestically and internationally. The results will be published in mathematics and science journals. The PI will organize interdisciplinary conference sessions to bring together scientists from traditionally disparate fields and create new interdisciplinary collaborations with researchers across the world. Furthermore, the research results, data, and software generated as a part of this grant will be made publicly available via the world wide web.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
蛋白质是执行许多维持生命的细胞过程的分子链。为了让蛋白质发挥其功能,蛋白质必须“折叠”成所谓的“天然状态”。虽然折叠过程不是直接可见的,但现代实验技术使观察蛋白质天然状态的3D结构成为可能。研究人员在许多蛋白质的天然状态中发现了打结(就像鞋上的打结)、链接(像奥林匹克五环)和其他类型的纠缠。此外,已有研究表明,这些蛋白质中的纠缠阻碍了进化,这表明这些纠缠对蛋白质的功能至关重要,而不仅仅是宇宙的意外。目前还不清楚为什么缠结(这会增加折叠过程的复杂性)对蛋白质有利,特别是考虑到错误折叠蛋白质的后果可能是毁灭性的。例如,错误折叠的蛋白质被认为与阿尔茨海默病、帕金森氏病和克雅氏病(人类类似疯牛病)等疾病有关。此外,与艾滋病毒、百日咳、肥胖和其他疾病有关的蛋白质已被证明含有缠结。这个项目的目标是开发计算工具并进行模拟,以更深入地了解蛋白质和其他分子链中所见的纠缠类型。对蛋白质纠缠以及蛋白质纠缠和蛋白质功能之间关系的清楚了解,将为人类疾病提供洞察力,并可能成为设计下一代抗击疾病药物的核心。PI是一个由多学科合作者组成的小组,本科生研究人员将利用他们的独特技能集实现两个主要目标。首先,之前已经提出了许多不同的技术来分类开放曲线中的打结类型(例如蛋白质)。在这个项目中,将比较这些不同的方法,并创建新的高效算法来测量这些曲线中的结点类型。其次,分子链的物理性质会影响可能产生的纠缠结构。例如,分子链通常被模拟为具有一定的厚度,即在链周围有一个细长的不可穿透的管。该小组将研究结的类型及其结构如何随着不同的厚度值而变化。总之,这些项目的目标是有效地对蛋白质中的纠缠进行分类,精确定位它们的位置,并确定一些物理性质如何影响观察到的纠缠。除了科学目标外,这笔赠款还有广泛的教育目标。本科生将接受PI的培训,并为项目做出贡献,在研究过程中获得内容知识和经验。学生们将参加专业会议,并通过演讲和海报传播他们的发现。这些研究经验对于培训下一代STEM教育工作者、研究人员和实践者至关重要。为了接触到更广泛的受众,PI将继续积极向国内和国际的学生、非专家和多学科团体发表演讲。研究结果将发表在数学和科学期刊上。国际和平研究所将组织跨学科会议,将来自传统不同领域的科学家聚集在一起,并与世界各地的研究人员建立新的跨学科合作。此外,作为这项拨款的一部分产生的研究结果、数据和软件将通过万维网公开。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Open knots
开结
  • DOI:
    10.1201/9781138298217
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dorier, Julien;Goundaroulis, Dimos;Rawdon, Eric J;Stasiak, Andrzej
  • 通讯作者:
    Stasiak, Andrzej
Knotting spectrum of polygonal knots in extreme confinement
极端约束下多边形结的结谱
  • DOI:
    10.1088/1751-8121/abf8e8
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ernst, Claus;Rawdon, Eric J.;Ziegler, Uta
  • 通讯作者:
    Ziegler, Uta
KnotProt 2.0: a database of proteins with knots and other entangled structures
  • DOI:
    10.1093/nar/gky1140
  • 发表时间:
    2019-01-08
  • 期刊:
  • 影响因子:
    14.9
  • 作者:
    Dabrowski-Tumanski, Pawel;Rubach, Pawel;Sulkowska, Joanna I.
  • 通讯作者:
    Sulkowska, Joanna I.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric Rawdon其他文献

Eric Rawdon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric Rawdon', 18)}}的其他基金

RUI: Knotting transitions in physical systems
RUI:在物理系统中进行转换
  • 批准号:
    1418869
  • 财政年份:
    2014
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
RUI: Theory and simulations of knotting in physical and biological systems ranging from proteins to glueballs
RUI:从蛋白质到胶球的物理和生物系统中打结的理论和模拟
  • 批准号:
    1115722
  • 财政年份:
    2011
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
RUI: Structure of Entanglement in Macromolecules
RUI:大分子中的缠结结构
  • 批准号:
    0810415
  • 财政年份:
    2008
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
RUI: Characterizing Energy-Minimizing Knots
RUI:表征能量最小化结
  • 批准号:
    0311010
  • 财政年份:
    2003
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Knot Complexity and the Structure of Polygonal Knot Space
结复杂度与多边形结空间的结构
  • 批准号:
    0296098
  • 财政年份:
    2001
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Knot Complexity and the Structure of Polygonal Knot Space
结复杂度与多边形结空间的结构
  • 批准号:
    0074315
  • 财政年份:
    2000
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant

相似海外基金

Planet Chicken: Chemical Entanglements in Asia's Poultry Boom
《鸡星球》:亚洲家禽繁荣中的化学纠缠
  • 批准号:
    DP240100187
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Projects
RUDIMENTS: Reflective Understanding of Digital Instruments as Musical Entanglements
基础:对数字乐器作为音乐纠葛的反思性理解
  • 批准号:
    EP/X023478/1
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grant
Probing the architecture, assembly, and function of amyloid-polysaccharide entanglements in bacterial biofilms
探究细菌生物膜中淀粉样蛋白-多糖缠结的结构、组装和功能
  • 批准号:
    10605820
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
Dynamic entanglements: the functional role and mechanistic basis of inter-individual neural synchrony
动态纠缠:个体间神经同步的功能作用和机制基础
  • 批准号:
    10644475
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
CAREER: Bottom-up construction of re-configurable entanglements toward polymer networks with switchable toughness
职业:自下而上构建具有可切换韧性的聚合物网络的可重新配置缠结
  • 批准号:
    2144288
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Academic Socialisation of Doctoral Students In Kashmir: Exploring Gendered Entanglements in a Politically Contested Context
克什米尔博士生的学术社会化:探索政治竞争背景下的性别纠葛
  • 批准号:
    2727757
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Studentship
Characterizing entanglements in models of multi-stranded polymers
表征多链聚合物模型中的缠结
  • 批准号:
    564802-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    University Undergraduate Student Research Awards
Egyptian state formation and the entanglements of personhood, power and emotions in Predynastic children's burials.
埃及国家的形成以及前王朝儿童墓葬中人格、权力和情感的纠葛。
  • 批准号:
    2418965
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    Studentship
Communist labor movements and their global entanglements in second half of the 20th century
20世纪下半叶的共产主义劳工运动及其全球纠葛
  • 批准号:
    435371988
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Fellowships
Words, Music, Entanglements: Diffractive Readings of Contemporary Jazz Recordings
文字、音乐、纠葛:当代爵士乐唱片的衍射解读
  • 批准号:
    2437920
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了