CAREER: Dynamics of cells and celullar mimetics in flow and electric fields: An integrated biophysical and engineering approach
职业:流场和电场中细胞和细胞模拟物的动力学:一种集成的生物物理和工程方法
基本信息
- 批准号:1117099
- 负责人:
- 金额:$ 31.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-10-01 至 2015-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0846247P. VlahovskaThe interplay between deformable microstructure and macroscale flow dynamics is a long-standing problem in particulate and multiphase fluid dynamics. The major challenge stems from the free-boundary nature of the particle interface. Lipid bilayer membranes that envelop cells are particularly complex interfaces because of their unique mechanics: the molecularly thin membrane is a highly-flexible incompressible uid sheet. As a result, particles made of closed lipid bilayers (cells and vesicles) exhibit richer dynamics than would capsules and drops. The objective of the proposed research is to understand the fluid-bilayer membrane coupling, with the long-term goal of explaining the non-equilibrium dynamics of suspensions of soft particles, such as biological cells. To achieve these goals, the PI will integrate ideas from fluid dynamics and biophysics to build a unified theoretical framework that will elucidate the interrelation between membrane deformation and composition, fluid motion, and external fields. This transformative approach encompasses three fundamental non-equilibrium problems: flows, electric fields, and multicomponent membranes. The proposed combination of theoretical, numerical, and experimental work will quantify vesicle deformation, orientation, and motion in external fields.Intellectual Merit: This CAREER plan sets forth the first systematic study of non-equilibrium bilayer membranes. The proposed research will advance our understanding of the interplay of physical processes at the nano-scale (e.g., membrane thermal undulations, poration), micro-scale (e.g., single vesicle deformation), and macro-scale (e.g., rheology of vesicle suspensions). Moreover, it will shed light on several controversial topics, e.g., the diversity of vesicle behaviors in linear and complex flows, the unusual shapes of vesicles in electric fields, and the viscosity of vesicle suspensions.Broader Impacts:The outcomes of the research will dramatically advance the field of biomicrouidics in multiple directions. First, the new knowledge will establish a sound basis for innovative designs of micro- and nano-devices built from lipid bilayers, such as networks of nanotubes and vesicle containers. Second, the proposed studies will uncover new general features of cell-force interactions, which will likely impact a wide range of applications, including cell electro-manipulation and targeted drug and gene delivery. The project has a strong interdisciplinary nature and combines fundamental knowledge across many fields, including biology, physics, and engineering. The international and interdisciplinary collaborations initiated by the PI will facilitate communication among scientists and engineers in different research and geographic areas. As a female faculty member, the PI will serve as a mentor and a role model to women as part of the Women in Science Project at Dartmouth, and will reach out to other under-represented minorities in science and engineering. She will collaborate with the Montshire Science Museum and Dartmouth's Outreach Office to develop educational programs for under-resourced schools in poor and rural areas. Education. The PI will develop new courses, e.g., Cellular and Molecular Biomechanics, which fuse engineering and biophysics. Such classes will enhance the curriculum at Dartmouth College, where engineering research and education in complex biological systems is in its early stages. The PI's teaching will emphasize the importance of analytical skills and theoretical framework in solving the real-world problems that students will encounter in their professional lives. She is co-organizing a summer school on Complex and Bio-Fluids Flows," for which the lectures will be web-published, to promote the transfer of knowledge between disciplines and generations. The PI will educate the public about the beauty of science by showcasing her Lab at the annual Thayer School of Engineering open house, which attracts children, their families, and local engineering enthusiasts.
0846247P。可变形微结构与宏观流动动力学之间的相互作用是颗粒和多相流体动力学中的一个长期问题。主要的挑战来自于粒子界面的自由边界性质。包裹细胞的脂质双层膜是特别复杂的界面,因为它们独特的力学:分子薄膜是高度柔性的不可压缩的流体片。因此,由封闭的脂质双层(细胞和囊泡)制成的颗粒表现出比胶囊和液滴更丰富的动力学。 拟议研究的目的是了解流体双层膜耦合,长期目标是解释软颗粒(如生物细胞)悬浮液的非平衡动力学。为了实现这些目标,PI将整合流体动力学和生物物理学的思想,建立一个统一的理论框架,阐明膜变形和组成,流体运动和外部场之间的相互关系。这种变革性的方法包括三个基本的非平衡问题:流动,电场和多组分膜。建议的理论,数值和实验工作相结合,将量化囊泡变形,方向和运动在external fields.智力优点:这个职业生涯计划提出了第一个系统的研究非平衡双层膜。拟议的研究将促进我们对纳米尺度物理过程相互作用的理解(例如,膜热起伏,穿孔),微尺度(例如,单个囊泡变形),和宏观尺度(例如,囊泡悬浮液的流变学)。此外,它将阐明几个有争议的话题,例如,线性和复杂流动中囊泡行为的多样性,电场中囊泡的不寻常形状,以及囊泡悬浮液的粘度。更广泛的影响:研究成果将在多个方向上极大地推进生物微粒学领域。首先,新知识将为由脂质双层构建的微型和纳米器件(例如纳米管网络和囊泡容器)的创新设计奠定坚实的基础。其次,拟议的研究将揭示细胞力相互作用的新的一般特征,这可能会影响广泛的应用,包括细胞电操纵和靶向药物和基因递送。该项目具有很强的跨学科性质,结合了许多领域的基础知识,包括生物学,物理学和工程学。PI发起的国际和跨学科合作将促进不同研究和地理区域的科学家和工程师之间的交流。作为一名女教师,PI将作为达特茅斯妇女科学项目的一部分,为妇女提供导师和榜样,并将接触到科学和工程领域其他代表性不足的少数民族。她将与蒙特希尔科学博物馆和达特茅斯的外联办公室合作,为贫困和农村地区资源不足的学校制定教育计划。 教育PI将开发新课程,例如,细胞和分子生物力学,融合工程和生物物理学。这些课程将加强达特茅斯学院的课程,该学院在复杂生物系统方面的工程研究和教育尚处于早期阶段。PI的教学将强调分析技能和理论框架在解决学生在职业生活中遇到的现实问题方面的重要性。她正在共同组织一个关于复杂和生物流体流动的暑期学校,”讲座将在网上发布,以促进学科和世代之间的知识转移。PI将通过在每年一度的Thayer工程学院开放日上展示她的实验室来教育公众科学之美,该开放日吸引了孩子们、他们的家人和当地的工程爱好者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Petia Vlahovska其他文献
A vesicle microrheometer for viscosity measurements of lipids and polymer bilayers
- DOI:
10.1016/j.bpj.2021.11.2353 - 发表时间:
2022-02-11 - 期刊:
- 影响因子:
- 作者:
Hammad A. Faizi;Rumiana Dimova;Petia Vlahovska - 通讯作者:
Petia Vlahovska
Petia Vlahovska的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Petia Vlahovska', 18)}}的其他基金
Electrohydrodynamic interactions of drops
液滴的电流体动力学相互作用
- 批准号:
2126498 - 财政年份:2021
- 资助金额:
$ 31.87万 - 项目类别:
Standard Grant
Nonlinear Dynamics of Colloidal Rotors: Chaos and Order
胶体转子的非线性动力学:混沌与有序
- 批准号:
2108502 - 财政年份:2021
- 资助金额:
$ 31.87万 - 项目类别:
Standard Grant
Motile colloids with tunable random walk: individual dynamics and collective behavior
具有可调随机游走的运动胶体:个体动力学和集体行为
- 批准号:
2004926 - 财政年份:2020
- 资助金额:
$ 31.87万 - 项目类别:
Standard Grant
Electromechanical Properties and Deformation of Biomembranes
生物膜的机电特性和变形
- 批准号:
1748049 - 财政年份:2017
- 资助金额:
$ 31.87万 - 项目类别:
Standard Grant
Collaborative Research: Electrorotational fluid instabilities
合作研究:电旋转流体不稳定性
- 批准号:
1704996 - 财政年份:2017
- 资助金额:
$ 31.87万 - 项目类别:
Standard Grant
Collaborative Research: Quantitative Analysis of Liposome Deformation at Nanoscale Using Resistive Pulse Sensing in Solid State Nanopores
合作研究:利用固态纳米孔中的电阻脉冲传感对纳米尺度脂质体变形进行定量分析
- 批准号:
1740011 - 财政年份:2017
- 资助金额:
$ 31.87万 - 项目类别:
Standard Grant
Collaborative Research: Quantitative Analysis of Liposome Deformation at Nanoscale Using Resistive Pulse Sensing in Solid State Nanopores
合作研究:利用固态纳米孔中的电阻脉冲传感对纳米尺度脂质体变形进行定量分析
- 批准号:
1562471 - 财政年份:2016
- 资助金额:
$ 31.87万 - 项目类别:
Standard Grant
Electrohydrodynamics of particle-covered drops
颗粒覆盖液滴的电流体动力学
- 批准号:
1437545 - 财政年份:2015
- 资助金额:
$ 31.87万 - 项目类别:
Standard Grant
相似国自然基金
β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Next Generation Fluorescent Tools for Measuring Autophagy Dynamics in Cells
用于测量细胞自噬动态的下一代荧光工具
- 批准号:
DP240100465 - 财政年份:2024
- 资助金额:
$ 31.87万 - 项目类别:
Discovery Projects
Investigating FGF Signaling Dynamics in migrating cells
研究迁移细胞中的 FGF 信号动力学
- 批准号:
10679898 - 财政年份:2024
- 资助金额:
$ 31.87万 - 项目类别:
A triptych of structural dynamics in the advancement of global health (in)equity in CAR-T cells and gene therapies
CAR-T 细胞和基因疗法推动全球健康(不)公平的结构动力学三联体
- 批准号:
24K15887 - 财政年份:2024
- 资助金额:
$ 31.87万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Effect of abnormal beta-amyloid on Ca dynamics in neural cells
异常β-淀粉样蛋白对神经细胞钙动力学的影响
- 批准号:
23K14744 - 财政年份:2023
- 资助金额:
$ 31.87万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The significance of nominally non-responsive neural dynamics in auditory perception and behavior
名义上无反应的神经动力学在听觉感知和行为中的意义
- 批准号:
10677342 - 财政年份:2023
- 资助金额:
$ 31.87万 - 项目类别:
Cellular FM-radios: seeing, probing, and perturbing single-cell protein activity dynamics in biological systems with frequency-barcoded spatiotemporal signaling circuits
细胞调频无线电:利用频率条形码时空信号电路观察、探测和扰动生物系统中的单细胞蛋白质活性动态
- 批准号:
10685132 - 财政年份:2023
- 资助金额:
$ 31.87万 - 项目类别:
The development of multimodal dynamics in a short-term memory system
短期记忆系统多模态动力学的发展
- 批准号:
10753261 - 财政年份:2023
- 资助金额:
$ 31.87万 - 项目类别:
Assessing the Dynamics of Hippocampal Neuronal Engrams in Memory Formation and Aging
评估海马神经元印迹在记忆形成和衰老中的动态
- 批准号:
10829020 - 财政年份:2023
- 资助金额:
$ 31.87万 - 项目类别:
Label-free, live-cell classification of neural stem cell activation state and dynamics
神经干细胞激活状态和动力学的无标记活细胞分类
- 批准号:
10863309 - 财政年份:2023
- 资助金额:
$ 31.87万 - 项目类别: