Assembly and Mechanics of the Mitotic Spindle
有丝分裂纺锤体的组装和力学
基本信息
- 批准号:1118206
- 负责人:
- 金额:$ 36.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-10-01 至 2014-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The mitotic spindle is a molecular machine that segregates chromosomes prior to cell division. The traditional picture is that the spindle assembles as a result of microtubules (long dynamic polymers) randomly capturing chromosomes. After this, the spindle length is maintained by a balance of inward tension exerted by molecular motors on the microtubules connecting spindle poles and chromosomes, and outward compression generated by other motors on the overlapping microtubules connecting the spindle poles. This picture is being challenged by mounting evidence indicating that spindle assembly and maintenance rely on much more complex interconnected networks of microtubules, molecular motors, chromosomes and regulatory proteins. From an engineering point of view, three design principles of this molecular machine are especially important: the spindle assembles rapidly, it assembles accurately, and it is mechanically robust, yet malleable. How is this design achieved with randomly interacting and impermanent molecular parts? How does the spindle self-assemble? What determines its mechanical properties? Mathematical and computational modeling will be used to examine quantitatively the process of the capture of chromosomes by dynamically unstable microtubules. Kinetics of the assembly are coupled with mechanical forces, and interplay between forces, movements, chromosome capture and assembly error correction will be investigated. Then a coarse grained hydrodynamic-like model of a gel of short microtubules and molecular motors is developed to elucidate the self-organization principles for meiotic and in vitro spindles. The models are tested and refined by comparison of their predictions with quantitative data. This project uses a novel combination of mathematical analysis, computer simulations and model-driven experiments to develop a novel quantitative model of the mitotic spindle-dynamic molecular machine that the cell uses to segregate chromosomes prior to cell division. Predictions of this model help reveal the mechanisms the cell uses to segregate the chromosomes fast, accurately and in a mechanically robust way. The assembly, error correction, and mechanics of the mitotic spindle are simulated simultaneously, generating testable predictions for the experiment. Such models are crucial for understanding not only the fundamental question of basic cell biology, but also to fine-tune drug design strategies for numerous diseases that stem from aneuploidy, i.e., an abnormal number of chromosomes.
有丝分裂纺锤体是一种在细胞分裂前分离染色体的分子机器。传统的说法是,纺锤体的组装是微管(长动态聚合物)随机捕获染色体的结果。在此之后,纺锤体的长度由分子马达对连接纺锤体极和染色体的微管施加的向内张力和由其他马达对连接纺锤体极的重叠微管产生的向外压缩的平衡来维持。越来越多的证据表明,纺锤体的组装和维护依赖于由微管、分子马达、染色体和调控蛋白组成的更复杂的相互连接的网络,这一图景受到了挑战。从工程角度来看,这种分子机器的三个设计原则尤其重要:主轴组装迅速,组装准确,机械坚固,但延展性强。这种设计是如何通过随机相互作用和非永久性分子部分来实现的?主轴是如何自组装的?是什么决定了它的机械性能?数学和计算模型将被用来定量研究动态不稳定的微管捕获染色体的过程。组装的动力学与机械力相耦合,力、运动、染色体捕获和组装误差校正之间的相互作用将被研究。然后,建立了一个由短微管和分子马达组成的凝胶的粗粒流体动力学模型,以阐明减数分裂和体外纺锤体的自组织原理。通过将它们的预测与定量数据进行比较,对模型进行了检验和改进。该项目使用数学分析、计算机模拟和模型驱动实验的新组合来开发一种新的有丝分裂纺锤体-动态分子机器的定量模型,细胞在细胞分裂之前使用该模型来分离染色体。这个模型的预测有助于揭示细胞用来快速、准确和机械地分离染色体的机制。同时模拟了有丝分裂纺锤体的组装、纠错和机制,为实验产生了可检验的预测。这样的模型不仅对于理解基本细胞生物学的基本问题至关重要,而且对于微调源于非整倍体(即染色体数量异常)的多种疾病的药物设计策略也至关重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Mogilner其他文献
Non-Monotonic Force-Dissociation Rate Relation Improves Ensemble Performance of Multiple Molecular Motors
- DOI:
10.1016/j.bpj.2009.12.3985 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Ambarish Kunwar;Michael Vershinin;Steven P. Gross;Alexander Mogilner - 通讯作者:
Alexander Mogilner
Numerical Simulation of Myosin-Triggered Switch in Motile Cells
- DOI:
10.1016/j.bpj.2009.12.880 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Kun-Chun Lee;Alexander Mogilner - 通讯作者:
Alexander Mogilner
Friction, not myosin, directs actin network contraction
- DOI:
10.1016/j.bpj.2023.11.2825 - 发表时间:
2024-02-08 - 期刊:
- 影响因子:
- 作者:
Mariya Savinov;Alexandra Colin;Manuel Thery;Laurent Blanchoin;Alexander Mogilner - 通讯作者:
Alexander Mogilner
Alexander Mogilner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Mogilner', 18)}}的其他基金
Computational modeling of cytoskeleton-cytoplasm mechanics at the mesoscale
介观尺度细胞骨架-细胞质力学的计算模型
- 批准号:
2052515 - 财政年份:2021
- 资助金额:
$ 36.18万 - 项目类别:
Standard Grant
Multipronged Modeling of Subcellular Self-Organization
亚细胞自组织的多管齐下建模
- 批准号:
1953430 - 财政年份:2020
- 资助金额:
$ 36.18万 - 项目类别:
Standard Grant
Mechanochemical Regulation of the Motile Cell Shape
运动细胞形状的机械化学调节
- 批准号:
0715729 - 财政年份:2007
- 资助金额:
$ 36.18万 - 项目类别:
Continuing Grant
Dynamics of Lamellipodia of Migrating Cells
迁移细胞板状伪足的动力学
- 批准号:
0315782 - 财政年份:2003
- 资助金额:
$ 36.18万 - 项目类别:
Standard Grant
International Conference on Mathematical and Theoretical Biology
国际数学与理论生物学会议
- 批准号:
0107388 - 财政年份:2001
- 资助金额:
$ 36.18万 - 项目类别:
Standard Grant
Mathematical models of cellular movements
细胞运动的数学模型
- 批准号:
0073828 - 财政年份:2000
- 资助金额:
$ 36.18万 - 项目类别:
Standard Grant
Mathematical Models for Cell Locomotion
细胞运动的数学模型
- 批准号:
9707750 - 财政年份:1997
- 资助金额:
$ 36.18万 - 项目类别:
Standard Grant
相似国自然基金
Science China-Physics, Mechanics & Astronomy
- 批准号:11224804
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
(Link-Sign-Mech-Furr) Linking Signalling to Mechanics and Shape Changes in Mitotic Furrowing
(Link-Sign-Mech-Furr) 将信号传导与有丝分裂犁沟的力学和形状变化联系起来
- 批准号:
EP/X033163/1 - 财政年份:2023
- 资助金额:
$ 36.18万 - 项目类别:
Fellowship
Collective mechanics and regulation of mitotic kinesins for spindle assembly
纺锤体组装有丝分裂驱动蛋白的集体力学和调节
- 批准号:
22H02590 - 财政年份:2022
- 资助金额:
$ 36.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mitotic cell mechanics in a tissue context
组织背景下的有丝分裂细胞力学
- 批准号:
BB/K009001/1 - 财政年份:2013
- 资助金额:
$ 36.18万 - 项目类别:
Research Grant
Motor proteins involved in mitotic spindle assembly: Biochemistry of regulation and biophysics of the collective mechanics
参与有丝分裂纺锤体组装的运动蛋白:调节生物化学和集体力学的生物物理学
- 批准号:
5379489 - 财政年份:2003
- 资助金额:
$ 36.18万 - 项目类别:
Priority Programmes
Motor proteins involved in mitotic spindle assembly: Biochemistry of regulation and biophysics of the collective mechanics
参与有丝分裂纺锤体组装的运动蛋白:调节生物化学和集体力学的生物物理学
- 批准号:
5379493 - 财政年份:2002
- 资助金额:
$ 36.18万 - 项目类别:
Research Grants