Models for the ecological effects and evolution of dispersal
生态效应和扩散演化模型
基本信息
- 批准号:1118623
- 负责人:
- 金额:$ 32.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-10-01 至 2015-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of the project is to use mathematical models to gain insight into the evolutionary causes and ecological effects of the dispersal of organisms. The individual behavior of dispersing organisms influences the spatial distribution of their population, which influences their ecological interactions with resources, predators, and members of their own species. Those interactions in turn influence the survival of individuals and populations, and hence create selective advantages for individuals with superior dispersal strategies. Selection results in evolutionary pressure on the dispersal behavior of individuals. Mathematical models are used to understand and describe the complex feedbacks at multiple scales involved in the ecology and evolution of dispersal behavior. The primary modeling approach is based on systems of reaction-advection-diffusion equations with variable and/or density dependent coefficients. Such equations can be derived from the movement mechanisms used by individuals, but they also make predictions about species interactions and evolution. Thus, they provide a framework for addressing complex interactions across different spatial and temporal scales and different levels of organization. They present significant mathematical challenges but recent advances in bifurcation theory and partial differential equations will facilitate their analysis. The analysis also employs ideas from the theory of dynamical systems. Patch models and integrodifferential equations with nonlocal dispersal are used in addition to partial differential equations. Many of the analytic approaches that work for reaction-diffusion-advection models can be applied to them, leading to conceptual unification. Traditional dispersal models typically view dispersal as an essentially random process that does not depend on environmental conditions or the internal states of individuals, but there have been numerous studies suggesting that conditional dispersal is common and may be advantageous. Thus, the research focuses on models where the diffusion and advection rates of individuals depend on environmental conditions and/or the population densities of their species and species with which they interact. That leads to new mathematical research on questions involving the dynamics and equilibria of nonlinear systems of parabolic partial differential equations with coefficients that vary in space and/or time.The dispersal of organisms influences the persistence and interactions of populations and drives range expansions, biological invasions, and the colonization of empty habitats. Thus, understanding dispersal is relevant to addressing questions about biological conservation, invasive species, pest control, and other environmental issues, including the response of populations to global change. The ways that the dispersal patterns of organisms affect their interactions with the environment and with other species are complex and subtle, so it is difficult to assess the effects of variations in dispersal patterns on those interactions. Also, since dispersal affects survival and thus leads to natural selection, evolution may change the dispersal strategies of organisms inhabiting changing environments. That process involves complex feedback loops which are difficult to understand. The research addresses those problems by using mathematical models to describe the ecological effects and evolution of dispersal. The models are based on partial differential equations, which provide a framework for describing how quantities change and influence each other over space and time. Specifically, the models include terms describing random movements, directed movements, and ecological interactions that may vary in time and space and/or depend on population densities. The research provides new information about the ways that these processes interact. Traditional models for dispersal usually describe it as a random process that does not depend on location or environmental conditions, so this research involves the development and analysis of new types of models that may be relevant in studying various phenomena in ecology and related areas.
该项目的目标是利用数学模型来深入了解生物扩散的进化原因和生态影响。分散生物体的个体行为影响其种群的空间分布,从而影响其与资源、捕食者和本物种成员的生态相互作用。这些相互作用反过来影响个体和种群的生存,因此为具有优越分散策略的个体创造了选择优势。选择对个体的分散行为产生了进化压力。数学模型用于理解和描述涉及生态和扩散行为进化的多尺度复杂反馈。主要的建模方法是基于具有变量和/或密度相关系数的反应-平流-扩散方程系统。这样的方程可以从个体使用的运动机制中推导出来,但它们也可以预测物种的相互作用和进化。因此,它们为处理跨越不同时空尺度和不同组织级别的复杂交互提供了一个框架。它们提出了重大的数学挑战,但最近在分岔理论和偏微分方程方面的进展将有助于它们的分析。分析还采用了动力系统理论的思想。除偏微分方程外,还使用了斑块模型和非局部分散的积分微分方程。许多适用于反应-扩散-平流模型的分析方法可以应用于它们,从而导致概念上的统一。传统的扩散模型通常认为扩散本质上是一个随机过程,不依赖于环境条件或个体的内部状态,但已经有大量研究表明,条件扩散是常见的,可能是有利的。因此,研究的重点是个体的扩散和平流率取决于环境条件和/或其物种及其相互作用的物种的种群密度的模型。这导致了涉及非线性抛物型偏微分方程系统的动力学和平衡问题的新的数学研究,这些系统的系数随空间和/或时间变化。生物的扩散影响种群的持久性和相互作用,并推动范围扩大、生物入侵和空旷栖息地的殖民化。因此,了解物种扩散与解决生物保护、入侵物种、害虫控制和其他环境问题有关,包括种群对全球变化的反应。生物的扩散模式影响它们与环境和其他物种相互作用的方式是复杂而微妙的,因此很难评估扩散模式变化对这些相互作用的影响。此外,由于扩散影响生存,从而导致自然选择,进化可能会改变生活在变化环境中的生物的扩散策略。这个过程涉及复杂的反馈循环,很难理解。本研究通过使用数学模型来描述生态效应和扩散的演变来解决这些问题。这些模型是基于偏微分方程的,偏微分方程提供了一个框架来描述量是如何随空间和时间变化和相互影响的。具体来说,这些模型包括描述随机运动、定向运动和生态相互作用的术语,这些术语可能在时间和空间上和/或取决于人口密度。这项研究提供了有关这些过程相互作用方式的新信息。传统的扩散模型通常将其描述为一个不依赖于位置或环境条件的随机过程,因此本研究涉及到新型模型的开发和分析,这些模型可能与研究生态学和相关领域的各种现象有关。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George Cosner其他文献
George Cosner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George Cosner', 18)}}的其他基金
Collaborative Research: Modeling Animal Dispersal: Linking the Ideal to the Real
合作研究:模拟动物扩散:将理想与现实联系起来
- 批准号:
1853478 - 财政年份:2019
- 资助金额:
$ 32.19万 - 项目类别:
Standard Grant
Models for Trait-Mediated Dispersal in Ecology
生态学中性状介导的扩散模型
- 批准号:
1514752 - 财政年份:2015
- 资助金额:
$ 32.19万 - 项目类别:
Standard Grant
Workshop on Mathematical Biology and Nonlinear Analysis
数学生物学与非线性分析研讨会
- 批准号:
1451136 - 财政年份:2014
- 资助金额:
$ 32.19万 - 项目类别:
Standard Grant
Models for the ecological effects and evolution of dispersal
生态效应和扩散演化模型
- 批准号:
0816068 - 财政年份:2008
- 资助金额:
$ 32.19万 - 项目类别:
Standard Grant
Dispersal in Ecological Models: From Patches to Landscapes
生态模型中的扩散:从斑块到景观
- 批准号:
0514839 - 财政年份:2005
- 资助金额:
$ 32.19万 - 项目类别:
Standard Grant
Ecological Modeling: From Individual Utilization of Space to Community Structure
生态建模:从个体空间利用到群落结构
- 批准号:
0211367 - 财政年份:2002
- 资助金额:
$ 32.19万 - 项目类别:
Standard Grant
Ecological Modeling: From Individual Utilization of Space to Community Structure
生态建模:从个体空间利用到群落结构
- 批准号:
9973017 - 财政年份:1999
- 资助金额:
$ 32.19万 - 项目类别:
Standard Grant
Mathematical Sciences: Reaction-Diffusion Models for Mathematical Ecology
数学科学:数学生态学的反应扩散模型
- 批准号:
9625741 - 财政年份:1996
- 资助金额:
$ 32.19万 - 项目类别:
Standard Grant
Mathematical Sciences: Reaction-Diffusion Models for Mathematical Ecology
数学科学:数学生态学的反应扩散模型
- 批准号:
9303708 - 财政年份:1993
- 资助金额:
$ 32.19万 - 项目类别:
Continuing Grant
Mathematical Sciences: Reaction-Diffusion Models for Mathematical Ecology
数学科学:数学生态学的反应扩散模型
- 批准号:
9002943 - 财政年份:1990
- 资助金额:
$ 32.19万 - 项目类别:
Continuing Grant
相似国自然基金
黄土高原半城镇化农民非农生计可持续性及农地流转和生态效应
- 批准号:41171449
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
脆弱生态约束下岩溶山区乡村可持续发展的导向模式研究
- 批准号:40561006
- 批准年份:2005
- 资助金额:23.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Identifying the Effects of Race-Related Stressors on Laboratory- Induced Stress and Craving among African Americans with Alcohol Use Disorder
确定种族相关压力源对患有酒精使用障碍的非裔美国人实验室诱发的压力和渴望的影响
- 批准号:
10664454 - 财政年份:2023
- 资助金额:
$ 32.19万 - 项目类别:
Bidirectional Influences Between Adolescent Social Media Use and Mental Health
青少年社交媒体使用与心理健康之间的双向影响
- 批准号:
10815392 - 财政年份:2023
- 资助金额:
$ 32.19万 - 项目类别:
Evaluating Microaggressions among Latinx Individuals with Obesity
评估拉丁裔肥胖人群的微攻击行为
- 批准号:
10725858 - 财政年份:2023
- 资助金额:
$ 32.19万 - 项目类别:
Targeting Alcohol-Opioid Co-Use Among Young Adults Using a Novel MHealth Intervention
使用新型 MHealth 干预措施针对年轻人中酒精与阿片类药物的同时使用
- 批准号:
10456380 - 财政年份:2023
- 资助金额:
$ 32.19万 - 项目类别:
Development of a digital therapeutic targeting anxiety sensitivity to reduce PTSD-SUD in women presenting for emergency care after sexual assault.
开发一种针对焦虑敏感性的数字疗法,以减少性侵犯后寻求紧急护理的女性的 PTSD-SUD。
- 批准号:
10449766 - 财政年份:2023
- 资助金额:
$ 32.19万 - 项目类别:
Ecological mechanisms by which forest vegetation declines in response to environmental change cause soil legacy effects
森林植被因环境变化而下降的生态机制导致土壤遗留效应
- 批准号:
23H03586 - 财政年份:2023
- 资助金额:
$ 32.19万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Perceived Ethnic Discrimination and Cognitive Function in Mexican-origin Adults
墨西哥裔成年人的种族歧视感知和认知功能
- 批准号:
10666946 - 财政年份:2023
- 资助金额:
$ 32.19万 - 项目类别:
Shame among Sexual Violence Survivors in Opioid Use Disorder Treatment: Event-level and longitudinal effects on Cravings, Substance Use, and Treatment Engagement
阿片类药物使用障碍治疗中性暴力幸存者的耻辱:对渴望、药物使用和治疗参与度的事件水平和纵向影响
- 批准号:
10641122 - 财政年份:2023
- 资助金额:
$ 32.19万 - 项目类别:
Neurobehavioral Effects of Frequent Co-use of Alcohol and Cannabis
经常同时使用酒精和大麻对神经行为的影响
- 批准号:
10608419 - 财政年份:2023
- 资助金额:
$ 32.19万 - 项目类别:
Assessing benefits and harms of cannabis use in patients treated with immunotherapy for cancer: a prospective cohort study
评估接受癌症免疫治疗的患者使用大麻的益处和危害:一项前瞻性队列研究
- 批准号:
10792109 - 财政年份:2023
- 资助金额:
$ 32.19万 - 项目类别:














{{item.name}}会员




