Collaborative Research: Differential Geometry and Statistics of Deformation Tensors

合作研究:变形张量的微分几何与统计

基本信息

  • 批准号:
    1119181
  • 负责人:
  • 金额:
    $ 7.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-08-01 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

Structural geology data and models rely on a variety of geometric concepts, such as directions in space, ellipsoids, and deformation tensors. In mathematics, these objects are often represented as elements of Lie groups and their associated symmetric spaces. This vast mathematical theory has been applied to geology in only a few instances. This project represents collaboration between two structural geologists and a mathematician; the goal is to develop three new applications of Lie groups to problems within structural geology. The first uses Lie group-based differential equations methods to compute non-steady deformations. This method is being applied to an existing dataset from a shear zone in New Caledonia. The second applies established statistics of ellipsoids to finite strain ellipsoid data from South Mountain, Maryland, which is a classic field location within the field of structural geology. The third develops a statistical theory of deformation tensors, and uses them to compute best-fit deformations and to quantify the uncertainty in data and models.This project enriches the fundamental tool set that geologists use to describe data and make inferences from data. It opens the door to further cross-fertilization among geology, mathematics, and other fields using related techniques, such as medical imaging. The products of the project will be disseminated in scholarly publications, short courses, and free software distributed to the geology community. The project will facilitate collaboration and research between faculty from a four-year college and a research-intensive university. The study will contribute to undergraduate education at both institutions, and will provide funding for undergraduate research projects. This project is supported by funds from the NSF EAR Tectonics Program and the Collaborations in Mathematical Geosciences Program.
构造地质数据和模型依赖于各种几何概念,例如空间方向、椭球和变形张量。在数学中,这些对象通常表示为李群及其相关对称空间的元素。这一庞大的数学理论仅在少数情况下应用于地质学。该项目代表了两个结构地质学家和一个数学家之间的合作;目标是开发李群在结构地质学问题中的三个新应用。第一种方法使用基于李群的微分方程方法来计算非稳态变形。这一方法正应用于新喀里多尼亚剪切带的现有数据集。第二个适用于建立统计椭球有限应变椭球数据从南山,马里兰州,这是一个经典的领域内的位置结构地质。第三个项目发展了变形张量的统计理论,并使用它们来计算最佳拟合变形和量化数据和模型中的不确定性。这个项目丰富了地质学家用来描述数据和从数据中进行推断的基本工具集。它为地质学、数学和其他使用相关技术(如医学成像)的领域之间的进一步交流打开了大门。该项目的成果将以学术出版物、短期课程和免费软件的形式分发给地质学界。该项目将促进四年制学院和研究型大学教师之间的合作和研究。这项研究将有助于这两个机构的本科教育,并将为本科研究项目提供资金。该项目由NSF地质构造计划和数学地球科学合作计划的资金支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sarah Titus其他文献

Sarah Titus的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sarah Titus', 18)}}的其他基金

Collaborative Research: Linking slip dynamics to off-fault deformation in strike-slip fault systems
合作研究:将走滑断层系统中的滑动动力学与断层变形联系起来
  • 批准号:
    1917048
  • 财政年份:
    2019
  • 资助金额:
    $ 7.45万
  • 项目类别:
    Standard Grant
CAREER: Combining Field Data and Computational Models to Characterize the Distribution of Oceanic Transform Fault Deformation throughout the Lithosphere
职业:结合现场数据和计算模型来表征整个岩石圈海洋转换断层变形的分布
  • 批准号:
    1151851
  • 财政年份:
    2012
  • 资助金额:
    $ 7.45万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
  • 批准号:
    2317192
  • 财政年份:
    2023
  • 资助金额:
    $ 7.45万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
  • 批准号:
    2317194
  • 财政年份:
    2023
  • 资助金额:
    $ 7.45万
  • 项目类别:
    Continuing Grant
Collaborative Research: Construction and Properties of Sobolev Spaces of Differential Forms on Smooth and Lipschitz Manifolds with Applications to FEEC
合作研究:光滑流形和 Lipschitz 流形上微分形式 Sobolev 空间的构造和性质及其在 FEEC 中的应用
  • 批准号:
    2309779
  • 财政年份:
    2023
  • 资助金额:
    $ 7.45万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
  • 批准号:
    2317193
  • 财政年份:
    2023
  • 资助金额:
    $ 7.45万
  • 项目类别:
    Continuing Grant
Collaborative Research: Construction and Properties of Sobolev Spaces of Differential Forms on Smooth and Lipschitz Manifolds with Applications to FEEC
合作研究:光滑流形和 Lipschitz 流形上微分形式 Sobolev 空间的构造和性质及其在 FEEC 中的应用
  • 批准号:
    2309780
  • 财政年份:
    2023
  • 资助金额:
    $ 7.45万
  • 项目类别:
    Standard Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
  • 批准号:
    2219384
  • 财政年份:
    2022
  • 资助金额:
    $ 7.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Differential Methods, Implicitization, and Multiplicities with a View Towards Equisingularity Theory
协作研究:以等奇性理论为视角的微分方法、隐式化和多重性
  • 批准号:
    2201149
  • 财政年份:
    2022
  • 资助金额:
    $ 7.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Explaining Differential Success in Biodiversity Knowledge Commons
合作研究:解释生物多样性知识共享的不同成功
  • 批准号:
    2122818
  • 财政年份:
    2022
  • 资助金额:
    $ 7.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Explaining Differential Success in Biodiversity Knowledge Commons
合作研究:解释生物多样性知识共享的不同成功
  • 批准号:
    2122819
  • 财政年份:
    2022
  • 资助金额:
    $ 7.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Differential Equations Motivated Multi-Agent Sequential Deep Learning: Algorithms, Theory, and Validation
协作研究:微分方程驱动的多智能体序列深度学习:算法、理论和验证
  • 批准号:
    2152717
  • 财政年份:
    2022
  • 资助金额:
    $ 7.45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了