Collaborative Research: An Agent-Based Simulation Environment for Predictive Longitudinal Modeling of High School Math Performance
协作研究:基于代理的模拟环境,用于高中数学成绩的预测纵向建模
基本信息
- 批准号:1119312
- 负责人:
- 金额:$ 6.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-11-15 至 2013-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This collaborative proof-of-concept study involves The University of California at Santa Cruz, The University of Texas at Austin, and the Los Alamos National Laboratory. The PIs will test the efficacy of using agent-based simulation and visualization models to identify the factors that predict mathematics achievement for students from the 8th grade to the 12th grade and beyond. The team are using a data set that includes 14 years of data on student grade reports, coursework, demographics, teacher variables such as years of service, professional development courses take, years of service, and other artifacts. The investigators hypothesize that agent-based modeling can be used to improve mathematics education. The research questions is What are the predictors of success in mathematics of public school 8th grade students and beyond as measured by a) mathematics performance (test scores) broken down by different mathematical skills? b) enrollment in algebra class (8th grade and high school)? and c) algebra and mathematics grades in 8th grade and high school? This exploratory study will analyze data using three tasks. The first task involves data assessment. The first task will involve discovering distributional information in general. They will explore visual and analytical processes of different variables so that different synthetic data can be simulated. The second task involves collaborating with a statistical science team to incorporate distributional information so that multivariate samples can be generated to form synthetic populations to use to build the agent-based model. The third task involves using the actual data from two large school districts to understand and quantify variability in the data. Education systems do not have a valid way to measure progressions of mathematics education to evaluate outcomes associated with mathematics learning outcomes. This project will provide a baseline understanding of student's progression in mathematics achievement that is critical in helping educators and policy makers set goals and standards for mathematics education within the United States.
这项合作概念验证研究涉及加州大学圣克鲁斯分校、德克萨斯大学奥斯汀分校和洛斯阿拉莫斯国家实验室。PI将测试使用基于代理的模拟和可视化模型的有效性,以确定预测8年级至12年级及以上学生数学成绩的因素。该团队正在使用一个数据集,其中包括14年的学生成绩报告,课程,人口统计数据,教师变量,如服务年限,专业发展课程,服务年限和其他工件。研究人员假设,基于代理的建模可以用来改善数学教育。研究问题是什么是公立学校8年级学生及以上的数学成功的预测因素,通过a)数学表现(考试成绩)按不同的数学技能细分?B)代数班的入学情况(八年级和高中)?以及c)八年级和高中的代数和数学成绩?这项探索性研究将使用三个任务分析数据。第一项任务涉及数据评估。第一个任务将涉及发现一般的分布信息。 他们将探索不同变量的视觉和分析过程,以便模拟不同的合成数据。第二项任务涉及与统计科学团队合作,以整合分布信息,从而可以生成多变量样本,以形成用于构建基于代理的模型的合成群体。第三项任务涉及使用来自两个大型学区的实际数据来理解和量化数据的可变性。教育系统没有有效的方法来衡量数学教育的进展,以评估与数学学习成果相关的成果。该项目将提供学生在数学成绩的进展,这是至关重要的帮助教育工作者和决策者制定目标和标准,在美国数学教育的基线了解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Resta其他文献
Digital equity and intercultural education
- DOI:
10.1007/s10639-015-9419-z - 发表时间:
2015-08-21 - 期刊:
- 影响因子:5.400
- 作者:
Paul Resta;Thérèse Laferrière - 通讯作者:
Thérèse Laferrière
Developing a learning community for technology infusion in teacher preparation
- DOI:
10.1007/bf02763473 - 发表时间:
2003-05-01 - 期刊:
- 影响因子:3.800
- 作者:
Paul Resta;Nancy J. Allen;Coral M. Noonan - 通讯作者:
Coral M. Noonan
Technology in Support of Collaborative Learning
- DOI:
10.1007/s10648-007-9042-7 - 发表时间:
2007-01-31 - 期刊:
- 影响因子:8.800
- 作者:
Paul Resta;Thérèse Laferrière - 通讯作者:
Thérèse Laferrière
Paul Resta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
- 批准号:
2347423 - 财政年份:2024
- 资助金额:
$ 6.36万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
- 批准号:
2347422 - 财政年份:2024
- 资助金额:
$ 6.36万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
- 批准号:
2312092 - 财政年份:2023
- 资助金额:
$ 6.36万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
- 批准号:
2240982 - 财政年份:2023
- 资助金额:
$ 6.36万 - 项目类别:
Standard Grant
Collaborative Research: Multi-Agent Adaptive Data Collection for Automated Post-Disaster Rapid Damage Assessment
协作研究:用于灾后自动化快速损害评估的多智能体自适应数据收集
- 批准号:
2316654 - 财政年份:2023
- 资助金额:
$ 6.36万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312501 - 财政年份:2023
- 资助金额:
$ 6.36万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
- 批准号:
2240981 - 财政年份:2023
- 资助金额:
$ 6.36万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312502 - 财政年份:2023
- 资助金额:
$ 6.36万 - 项目类别:
Standard Grant
Collaborative Research: Multi-Agent Adaptive Data Collection for Automated Post-Disaster Rapid Damage Assessment
协作研究:用于灾后自动化快速损害评估的多智能体自适应数据收集
- 批准号:
2316653 - 财政年份:2023
- 资助金额:
$ 6.36万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
- 批准号:
2312093 - 财政年份:2023
- 资助金额:
$ 6.36万 - 项目类别:
Standard Grant