ATD: Improving Analysis of Microbial Mixtures through Sparse Reconstruction Algorithms and Statistical Inference
ATD:通过稀疏重建算法和统计推断改进微生物混合物的分析
基本信息
- 批准号:1120622
- 负责人:
- 金额:$ 66.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-15 至 2014-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project aims to improve microbial classification and comparison from next-generation sequencing technology. The first objective is to improve microbial identification from short reads, using a Bayesian classifier. While the classifier is fast, it can rely on a large set of features. This is due to its reliance on fixed DNA word sizes that may have many zero-frequencies when the word size is long. The investigators propose to compensate the classifier with a zero-inflated negative binomial and Poisson models, instead of traditionally using linguistic "smoothing" techniques that are ad-hoc at best. The second objective is to reduce the feature size for whole-genome analysis. For long DNA word sizes, there is an enormous feature space, and by using random manifolds, compressive sensing, and other techniques, the investigators propose to reduce the feature space while retaining accuracy of microbial classification. Finally, the third objective is to be able to model and fit functions to microbial population changes in a gradient (a changing environmental factor), especially when many of the data points are missing. This final objective will allow biologists and ecologists to now correlate the microbial composition (from the first two objectives) to environmental factors and to model microbial changes and thus improve future threat detection.The investigators are developing mathematical methods to model how an environment is uniquely identified by its microbial community. Because a chemical will not have to be measured directly, the projects' results will enable advances in biotechnology for trace chemical detection and forensics. An example is modeling soil microbial community changes in response to buried explosives in order to enhance detection of these devices and secure our troops.
该项目旨在改进下一代测序技术中的微生物分类和比较。第一个目标是使用贝叶斯分类器从短读中改进微生物识别。虽然分类器速度很快,但它可以依赖于一大组特征。这是因为它依赖于固定的DNA单词大小,当单词大小较长时,可能会有许多零频率。研究人员建议用零膨胀的负二项和泊松模型来补偿分类器,而不是传统上使用充其量是特别的语言“平滑”技术。第二个目标是减少全基因组分析的特征尺寸。对于长DNA字长,存在着巨大的特征空间,研究人员建议通过使用随机流形、压缩传感等技术来减少特征空间,同时保持微生物分类的准确性。最后,第三个目标是能够对梯度(不断变化的环境因素)中的微生物种群变化建立模型并使其适应函数,特别是在许多数据点缺失的情况下。这一最终目标将使生物学家和生态学家现在能够将微生物组成(来自前两个目标)与环境因素相关联,并对微生物变化进行建模,从而改进未来的威胁检测。研究人员正在开发数学方法,以建模如何通过微生物群落唯一地识别环境。由于不需要直接测量化学物质,这些项目的结果将使微量化学物质检测和取证方面的生物技术取得进展。一个例子是模拟土壤微生物群落的变化,以响应埋在地下的爆炸物,以加强对这些装置的探测,并确保我们部队的安全。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Simon Foucart其他文献
Full recovery from point values: an optimal algorithm for Chebyshev approximability prior
- DOI:
10.1007/s10444-023-10063-x - 发表时间:
2023-07-24 - 期刊:
- 影响因子:2.100
- 作者:
Simon Foucart - 通讯作者:
Simon Foucart
for Two Intersected Centered
对于两个相交的中心
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Simon Foucart;†. ChunyangLiao - 通讯作者:
†. ChunyangLiao
Allometry constants of finite-dimensional spaces: theory and computations
- DOI:
10.1007/s00211-009-0225-7 - 发表时间:
2009-03-31 - 期刊:
- 影响因子:2.200
- 作者:
Simon Foucart - 通讯作者:
Simon Foucart
Radius of information for two intersected centered hyperellipsoids and implications in optimal recovery from inaccurate data
两个相交的中心超椭球体的信息半径以及对不准确数据的最佳恢复的影响
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:1.7
- 作者:
Simon Foucart;Chunyang Liao - 通讯作者:
Chunyang Liao
On the norms and minimal properties of de la Vallée Poussin’s type operators
- DOI:
10.1007/s00605-018-1159-x - 发表时间:
2018-02-19 - 期刊:
- 影响因子:0.800
- 作者:
Beata Deregowska;Simon Foucart;Barbara Lewandowska;Lesław Skrzypek - 通讯作者:
Lesław Skrzypek
Simon Foucart的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Simon Foucart', 18)}}的其他基金
Conference: Inaugural CAMDA Conference
会议:首届 CAMDA 会议
- 批准号:
2329268 - 财政年份:2023
- 资助金额:
$ 66.63万 - 项目类别:
Standard Grant
CDS&E-MSS: Optimal Recovery in the Age of Data Science
CDS
- 批准号:
2053172 - 财政年份:2021
- 资助金额:
$ 66.63万 - 项目类别:
Standard Grant
CDS&E-MSS: Recovery of High-Dimensional Structured Functions
CDS
- 批准号:
1622134 - 财政年份:2016
- 资助金额:
$ 66.63万 - 项目类别:
Standard Grant
相似国自然基金
Improving modelling of compact binary evolution.
- 批准号:10903001
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Research Initiation: Improving engineering mechanics self-efficacy by focusing on abstracting the physical world as a precursor to analysis.
研究启动:通过专注于抽象物理世界作为分析的先驱来提高工程力学的自我效能。
- 批准号:
2306156 - 财政年份:2023
- 资助金额:
$ 66.63万 - 项目类别:
Standard Grant
Large-scale data analysis for improving the process of personalized remote lifestyle intervention
大规模数据分析,改善个性化远程生活方式干预流程
- 批准号:
23K16769 - 财政年份:2023
- 资助金额:
$ 66.63万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Improving the design and statistical analysis of cluster-randomized trials on tropical infectious diseases
改进热带传染病整群随机试验的设计和统计分析
- 批准号:
10570440 - 财政年份:2023
- 资助金额:
$ 66.63万 - 项目类别:
Improving LGBTQ+ youth mental health through integration of care: a Foucauldian Discourse Analysis of qualitative data from Queer Futures 2 study
通过整合护理改善 LGBTQ 青少年心理健康:对酷儿未来 2 研究定性数据的福柯话语分析
- 批准号:
ES/X013324/1 - 财政年份:2023
- 资助金额:
$ 66.63万 - 项目类别:
Research Grant
Precise analysis of eye movement and development of vision training method for improving dynamic visual acuity
精准分析眼动并开发提高动态视力的视觉训练方法
- 批准号:
23K10668 - 财政年份:2023
- 资助金额:
$ 66.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Open source software tools: improving accessibility, usability and versatility for bone and joint computed tomography image analysis
开源软件工具:提高骨和关节计算机断层扫描图像分析的可访问性、可用性和多功能性
- 批准号:
485107 - 财政年份:2023
- 资助金额:
$ 66.63万 - 项目类别:
Operating Grants
Improving Dynamic Finite Element Analysis of Aircraft During Landing
改进飞机着陆过程中的动态有限元分析
- 批准号:
2891024 - 财政年份:2022
- 资助金额:
$ 66.63万 - 项目类别:
Studentship
Improving functional MRI Analysis via Integrated One-Step Tensor-variate Methodology
通过集成一步张量变量方法改进功能 MRI 分析
- 批准号:
10708147 - 财政年份:2022
- 资助金额:
$ 66.63万 - 项目类别:
Collaborative Research: CAS - Climate: Improving Nonstationary Intensity-Duration-Frequency Analysis of Extreme Precipitation by Advancing Knowledge on the Generating Mechanisms
合作研究:CAS - 气候:通过增进对生成机制的认识来改进极端降水的非平稳强度-持续时间-频率分析
- 批准号:
2221803 - 财政年份:2022
- 资助金额:
$ 66.63万 - 项目类别:
Standard Grant
Microplastics Analysis for Surface Freshwater Systems: Improving Accuracy and Throughput for Industry Adoption
地表淡水系统的微塑料分析:提高行业采用的准确性和吞吐量
- 批准号:
571137-2021 - 财政年份:2022
- 资助金额:
$ 66.63万 - 项目类别:
Applied Research and Development Grants - Level 3














{{item.name}}会员




