BRIGE: Microfabricated Bacterial Environments with Integrated Nanofluidic Electrochemical Sensors for Systems Biology Applications

BRIGE:用于系统生物学应用的具有集成纳流体电化学传感器的微制造细菌环境

基本信息

  • 批准号:
    1125535
  • 负责人:
  • 金额:
    $ 17.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

PI: GoluchProposal Number: 1125535 New tools are enabling unprecedented advances in biology and medicine. This proposal describes an interdisciplinary research program that aims to create, test, and disseminate micro and nanofluidic technology for quantitative biological studies. Specifically, the behavior of individual bacterial cells will be investigated using nanofluidic electrochemical sensors in combination with traditional optical techniques. Initial experiments are focused on detection of quorum sensing (or auto-inducing) molecules which are small electroactive molecules that are excreted by many bacterial cells, including several involved in human diseases. The platform will be used to investigate effects of external stimuli, static heterogeneity, and the role of chemical communication in bacterial populations. This approach will utilize nanofluidic electrochemical sensors that are microfabricated on large silicon substrates. These nanofluidic sensors allow for real-time electrochemical detection of concentrations as low as 100 nM and can be easily integrated with larger fluidic systems. A microfluidic architecture, complete with control valves, will be aligned over the nanofluidic sensors on the silicon substrate to allow transport and trapping of individual bacterial cells near the sensors. The microfluidic architecture will be constructed using a photo-curable transparent polymer (polydimethylsiloxane) via soft lithography. The transparent nature of the microfluidic channels will allow for optical monitoring of the cells. The assembled system will allow the simultaneous real-time electrochemical and optical characterization of individual cells. Of particular interest are the physical and biochemical changes the cells will undergo when exposed to various external factors, such as pH, temperature, buffer concentration, surface modification, and drug molecules. Initial electrochemical testing will be conducted with known commercially available quorum sensing molecules (e.g. autoinducer-2, pyocyanin) and validation of the microfluidic architecture will utilize microscale beads to simulate bacterial cells. In the final stage of this project, bacterial cells (e.g. E. coli, P. aeruginosa) will be transported and trapped next to the nanofluidic sensing elements using a microfluidic platform. The generation of quorum sensing molecules by the cells will be monitored electrochemically while the cellular response to the molecules will be observed optically. The long term objective for this research is to provide an integrated chip-in-a-lab platform for systems biology experiments where researchers will be able to stimulate and monitor hundreds of individual cells simultaneously. Intellectual Merit: Few alternatives exist for monitoring single cells. The proposed work will investigate the feasibility and practicality of electrochemical detection as a technique for studying the behavior of individual cells in conjunction with existing optical techniques in a high-throughput manner. The proposal will also investigate microfluidic systems for handling of individual bacterial cells with diameters of 1-2 micrometers, which remains a difficult technological challenge. This broadly applicable platform will revolutionize the field of systems biology by providing label-free chemical information for potentially thousands of individual cells simultaneously. No such high-throughput electronic sensor technology is currently available. The fundamental questions being investigated will give insight to the behavior and interactions of bacterial cells that can be applied to biotechnology, medicine, and environmental research. Broader Impacts: The interdisciplinary nature of this research will foster collaborations between engineers and biologists and train researchers for emerging dynamic work environments. The proposed technology can be potentially employed for a large variety applications ranging from microbial fuel cells to drug screening to biomedical instrumentation to evolutionary biology. In general, a better fundamental understanding of the electrochemical and micro/nanoscale systems involved in this project will lead to the next generation of tools for researchers in the biosciences. The importance of this project and engineering in general will be disseminated to the public by actively engaging teachers and students ranging from the middle school to undergraduate levels. The PI will visit local inner city school to provide information about engineering career opportunities. Live and virtual laboratory tours will be offered. Hands on training in the laboratory will be provided for high school students and teachers from Boston inner city schools, such as Roxbury Preparatory Charter School. Middle and high school teachers participating in the training program will be partner with the research group to design kits and teaching modules to help educate students in junior high and high school science classes about nanobiotechonolgy. The developed material will initially be assessed at Pope John Paul II Catholic Grade School, a predominantly minority school on Chicago?s southwest side. At the college level, research experiences for undergraduates will be offered in the research group to reinforce engineering concepts learned in the classroom.
PI:Goluch提案编号:1125535 新的工具正在使生物学和医学取得前所未有的进步。该提案描述了一个跨学科的研究计划,旨在创建,测试和传播用于定量生物学研究的微流体和纳米流体技术。具体来说,将使用纳米流体电化学传感器结合传统的光学技术来研究单个细菌细胞的行为。最初的实验集中在检测群体感应(或自动诱导)分子,这些分子是由许多细菌细胞分泌的小电活性分子,包括与人类疾病有关的几种。该平台将用于研究外部刺激的影响,静态异质性以及细菌种群中化学通讯的作用。 这种方法将利用在大型硅衬底上微制造的纳米流体电化学传感器。这些纳米流体传感器允许低至100 nM的浓度的实时电化学检测,并且可以容易地与更大的流体系统集成。一个带有控制阀的微流体结构将在硅衬底上的纳米流体传感器上对齐,以允许在传感器附近运输和捕获单个细菌细胞。微流体结构将通过软光刻使用光固化透明聚合物(聚二甲基硅氧烷)构建。微流体通道的透明性质将允许对细胞进行光学监测。组装的系统将允许单个电池的同时实时电化学和光学表征。特别令人感兴趣的是当暴露于各种外部因素(例如pH、温度、缓冲液浓度、表面修饰和药物分子)时细胞将经历的物理和生化变化。 初始电化学测试将使用已知的市售群体感应分子(例如,自诱导物-2、绿脓菌素)进行,并且微流体架构的验证将利用微尺度珠来模拟细菌细胞。在该项目的最后阶段,细菌细胞(如E.大肠杆菌、铜绿假单胞菌)将被运输并被捕获到使用微流体平台的纳米流体感测元件旁边。将电化学监测细胞产生的群体感应分子,同时将光学观察细胞对分子的反应。这项研究的长期目标是为系统生物学实验提供一个集成的实验室芯片平台,研究人员将能够同时刺激和监测数百个单个细胞。 智力优势:很少有监测单细胞的替代方案。拟议的工作将研究电化学检测的可行性和实用性,作为一种技术,结合现有的光学技术,以高通量的方式研究单个细胞的行为。该提案还将研究用于处理直径为1-2微米的单个细菌细胞的微流体系统,这仍然是一个困难的技术挑战。这个广泛适用的平台将通过同时为潜在的数千个单个细胞提供无标记的化学信息来彻底改变系统生物学领域。目前还没有这样的高通量电子传感器技术。正在研究的基本问题将使人们深入了解细菌细胞的行为和相互作用,这些细菌细胞可应用于生物技术,医学和环境研究。 更广泛的影响:这项研究的跨学科性质将促进工程师和生物学家之间的合作,并为新兴的动态工作环境培养研究人员。所提出的技术可以潜在地用于从微生物燃料电池到药物筛选到生物医学仪器到进化生物学的各种应用。总的来说,对该项目所涉及的电化学和微/纳米级系统的更好的基本理解将为生物科学研究人员带来下一代工具。该项目和工程的重要性将通过积极吸引从中学到本科的教师和学生向公众宣传。PI将访问当地的内城学校,提供有关工程职业机会的信息。将提供现场和虚拟实验室图尔斯参观。将为波士顿市中心学校(如Roxbury预备特许学校)的高中学生和教师提供实验室实践培训。参加培训计划的初中和高中教师将与研究小组合作,设计工具包和教学模块,以帮助教育初中和高中科学课程的学生了解纳米生物技术。开发的材料最初将在教皇约翰保罗二世天主教小学进行评估,这是芝加哥一所以少数民族为主的学校?西南方。在大学一级,研究小组将为本科生提供研究经验,以加强在课堂上学到的工程概念。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Edgar Goluch其他文献

An innovative cultivation method that enable isolating pure culture automatically
一种可自动分离纯培养物的创新培养方法
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    5.Yuto Ueda;Nil Tandogan;Edgar Goluch;Tomonori Kindaichi;Akiyoshi Ohashi1;Yoshiteru Aoi
  • 通讯作者:
    Yoshiteru Aoi

Edgar Goluch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Edgar Goluch', 18)}}的其他基金

SBIR Phase I :Point-of-Care Test for Identifying Gram-Negative Urinary Tract Infections in Companion Animals
SBIR 第一阶段:用于识别伴侣动物革兰氏阴性尿路感染的护理点测试
  • 批准号:
    1746866
  • 财政年份:
    2018
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Standard Grant
EAGER: Bio-Inspired Electrochemical Sensing of Small Molecules using Antibodies
EAGER:使用抗体对小分子进行仿生电化学传感
  • 批准号:
    1740961
  • 财政年份:
    2017
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Standard Grant
I-Corps: Commercialization of electrochemical sensor technology for pathogen detection
I-Corps:用于病原体检测的电化学传感器技术的商业化
  • 批准号:
    1542812
  • 财政年份:
    2015
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Standard Grant
IDBR: TYPE A Nano-Constriction Devices for Isolation and Cultivation of Environmental Microbes
IDBR:用于环境微生物分离和培养的 A 型纳米收缩装置
  • 批准号:
    1353853
  • 财政年份:
    2014
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Continuing Grant
International Research Fellowship Program: Electrochemical Biosensors for the Detection of Individual Enzyme Catalysis Events
国际研究奖学金计划:用于检测单个酶催化事件的电化学生物传感器
  • 批准号:
    0754396
  • 财政年份:
    2008
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Fellowship Award

相似海外基金

EAGER: Quantum Manufacturing: 3D Microfabricated Ion Traps
EAGER:量子制造:3D 微制造离子阱
  • 批准号:
    2240291
  • 财政年份:
    2023
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Standard Grant
Biocompatible Flexible Microfabricated Sensors for Surgical Applications
适用于外科应用的生物相容性柔性微加工传感器
  • 批准号:
    2321238
  • 财政年份:
    2023
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Standard Grant
Microfabricated Ion-Cavity nodes for Robust, Optically-Networked Quantum Computing (MICRON-QC)
用于鲁棒光网络量子计算的微加工离子腔节点 (MICRON-QC)
  • 批准号:
    EP/Y026438/1
  • 财政年份:
    2023
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Research Grant
Microfabricated bioactive hydrogel platform as in vitro models to understand the mechanobiology of cell-matrix interaction in human tissue
微制造的生物活性水凝胶平台作为体外模型来了解人体组织中细胞-基质相互作用的力学生物学
  • 批准号:
    RGPIN-2021-03200
  • 财政年份:
    2022
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Discovery Grants Program - Individual
Wireless devices microfabricated in thick material layers
在厚材料层中微制造的无线设备
  • 批准号:
    RGPIN-2018-06318
  • 财政年份:
    2022
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Discovery Grants Program - Individual
Challenge to enhancements of nucleate boiling and critical heat flux using LISS-microfabricated metallic surfaces
使用 LISS 微加工金属表面增强核沸腾和临界热通量的挑战
  • 批准号:
    21K20409
  • 财政年份:
    2021
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Microfabricated hydrogel platform as in vitro model to study vascular cells
微制造水凝胶平台作为研究血管细胞的体外模型
  • 批准号:
    570633-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 17.41万
  • 项目类别:
    University Undergraduate Student Research Awards
Wireless devices microfabricated in thick material layers
在厚材料层中微制造的无线设备
  • 批准号:
    RGPIN-2018-06318
  • 财政年份:
    2021
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Discovery Grants Program - Individual
Microfabricated bioactive hydrogel platform as in vitro models to understand the mechanobiology of cell-matrix interaction in human tissue
微制造的生物活性水凝胶平台作为体外模型来了解人体组织中细胞-基质相互作用的力学生物学
  • 批准号:
    RGPIN-2021-03200
  • 财政年份:
    2021
  • 资助金额:
    $ 17.41万
  • 项目类别:
    Discovery Grants Program - Individual
Microfabricated all-diamond microelectrode arrays for neurotransmitter sensing and extracellular recording
用于神经递质传感和细胞外记录的微加工全金刚石微电极阵列
  • 批准号:
    10337137
  • 财政年份:
    2020
  • 资助金额:
    $ 17.41万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了