JILA PFC: Bridging theGap from Few-Body to Many-Body through Quantum Control
JILA PFC:通过量子控制弥合从少体到多体的差距
基本信息
- 批准号:1125844
- 负责人:
- 金额:$ 1685万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Cooperative Agreement
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-15 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The primary theme of the JILA PFC is to address the challenge of bridging the gap from few-body physics to many-body physics through quantum control. The central scientific objective is to extend the remarkable level of control and understanding that physicists have for few-body systems to many-body quantum systems. Quantum systems made up of many particles and their interactions play an essential role in much of physics, including condensed matter physics, material physics, nuclear physics, high-energy particle physics, astrophysics, biophysics, and chemical physics. The JILA PFC will focus upon the challenge of controlling and understanding multi-particle quantum systems using the tools and ideas of atomic, molecular, and optical (AMO) physics, which, ironically, is a field of physics for which many-body physics has not traditionally been emphasized. AMO physics is in the midst of a revolution, evidenced, for example, by the remarkable accomplishments in recent years of experiments on ultracold gases, ultrafast laser technology, and ultraprecise spectroscopy. This revolution affords a new approach for confronting the behavior of complex multi-particle systems using control at the quantum level. In the period 2011- 2016, the JILA PFC investigators will apply the tools of modern AMO physics to tackle the challenge of bridging the gap from few-body to many-body quantum physics from both sides, using cutting-edge techniques to study few-body problems beyond current understanding and many-particle ensembles in regimes beyond the limits of a mean-field description. Specific questions to be addressed are (1) What new insights can one bring to quantum many-body physics using ultracold atom and molecule gases as model systems? (2) Can one extend AMO's measurement and control techniques to create new types of many-body systems using coherent light-matter coupling? (3) Can one understand and address, in the few- to many-body problem, the physics of molecule formation and, more generally, chemical reactions by applying cutting-edge technologies to control and probe simple molecular systems? (4) What are potential high impact research directions that are closely tied to this work? The research will take place at JILA, a multidisciplinary research institute located on the University of Colorado campus in Boulder, and builds upon the extensive results achieved under the present PFC funding. Significant results in nanokelvin molecular physics, in non-classical behavior of nano-oscillators and microwave fields, and in various probes of solid and liquid dynamics across timescales that span twelve orders of magnitude, all set the stage for rapid future progress in four major activities:.Major Activity 1: Building complex matter from the ground up.Work in this area will explore the rich phenomena arising in novel quantum many-body systems that are assembled from ultracold atoms and molecules. This major activity, which has strong connections to condensed matter physics, will include research in dipolar molecular quantum gases and strongly interacting atomic quantum gases. Specific research goals include exploring the boundary between gaseous and liquid behavior in gases of strongly interacting particles, and realizing novel states of quantum matter using the long-range and anisotropic interactions between ultracold polar molecules.Major Activity 2: Engineering quantum many-body systems using light-matter coupling.This activity will extend quantum control to increasingly complex systems by exploiting coherent light matter interactions. Projects will explore collective light emission from cold atoms, the quantum motion of nano-mechanical oscillators, and light-induced coherence in material systems. An example project is an ambitious effort to map non-classical photon states in the microwave onto corresponding states in optical modes and vice versa, using a nanomechanical "diving board" as the coupling medium.Major Activity 3: Confronting molecular transformation.At the most basic level, reactions proceed via the interaction between electrons and the coupling between electronic and nuclear motion. JILA PFC investigators will explore the physics of reactions at this fundamental level, with the goal of understanding, and learning to control, energy flow in small systems such as triatomic and tetratomic molecules. They will focus on three projects: studying cold and ultracold reactive molecular scattering, probing time-resolved nuclear and electronic dynamics, and developing coherent UV to IR molecular spectroscopy.Major Activity 4: Exploring high impact synergistic research directions.An essential aspect of JILA's center philosophy is that one should be alert to opportunities to "export" interesting ideas and technologies to activities outside the central focus of the center, and to import these as well. JILA will explore a few of these opportunities, investing a small fraction of center resources in facilitating this trade in ideas and technology.The major activities share a common focus, and therefore have substantial intellectual and scientific overlap, and, if, anything, still stronger technological overlap. Prior experience has shown that the extraordinarily challenging goals envisioned for the JILA PFC are best tackled with fluid collaborations that can draw on a range of capabilities, such as laser frequency combs, ultracold atoms, advanced VUV sources, quantum and ultrafast optics, the sensitive detection methods of chemical physics, and theoretical methods, both computational and analytic. This diversity of expertise cannot readily be synthesized in an individual investigator's group. In addition, the JILA PFC relies on and continuously upgrades a shared technical infrastructure including a world-class machine shop, as well as electronics and computational support, and engages in a collective program of education and outreach efforts.The JILA program will have many different broader impacts. It will enhance the nation's technical infrastructure by developing many new laser-based tools and techniques, and by producing many graduates who are highly trained not only in AMO physics but also in technical communication and teaching skills. It will connect with the science community around the world and foster field-wide frontier research through organization and hosting of topical workshops, through a short-term and long-term JILA visitor program, as well as through the many undergraduate students, graduate students, and postdoctoral researchers who participate in the collaborative and interdisciplinary research at JILA. As discussed above, the proposed work connects to many different areas of physics, including applied areas such as materials physics, biophysics, and nanotechnology. Extending understanding and quantum control from few- to many-body systems will certainly impact many applications, such as photosynthesis, design of catalytic materials, and new techniques in renewable energy. The proposed program will also attract more students into science, particularly from under-represented groups, through a vigorous undergraduate research program and a predominantly minority-serving middle-school after-school enrichment program. It will contribute to general science interest and literacy through a variety of programs that include the very popular "Wizards" show for school children, the University of Colorado Saturday Physics public talks, and suitably trained graduate students and postdoctoral researchers who present science topics to Colorado middle-school and high-school students. It will also research, develop, and broadly disseminate better ways to teach AMO science to all students, better ways to teach AMO science to all students, particularly through on-line interactive simulation.
JILA PFC 的主要主题是解决通过量子控制弥合从少体物理到多体物理的差距的挑战。核心科学目标是将物理学家对少体系统的控制和理解的卓越水平扩展到多体量子系统。由许多粒子组成的量子系统及其相互作用在物理学的许多领域发挥着重要作用,包括凝聚态物理学、材料物理学、核物理学、高能粒子物理学、天体物理学、生物物理学和化学物理学。 JILA PFC 将重点关注使用原子、分子和光学 (AMO) 物理的工具和思想来控制和理解多粒子量子系统的挑战,具有讽刺意味的是,这是一个传统上不强调多体物理的物理领域。 AMO 物理学正处于一场革命之中,近年来在超冷气体、超快激光技术和超精密光谱学方面的实验所取得的显着成就就证明了这一点。这场革命提供了一种使用量子水平控制来应对复杂多粒子系统行为的新方法。 2011年至2016年期间,JILA PFC研究人员将应用现代AMO物理学工具来应对弥合从少体量子物理学到多体量子物理学双方差距的挑战,利用尖端技术研究超出当前理解的少体问题和超出平均场描述限制的多粒子系综。需要解决的具体问题是(1)使用超冷原子和分子气体作为模型系统可以为量子多体物理带来哪些新见解? (2) 能否扩展 AMO 的测量和控制技术,以利用相干光-物质耦合创建新型多体系统? (3) 在少体到多体问题中,人们能否通过应用尖端技术来控制和探测简单的分子系统来理解和解决分子形成的物理学,以及更普遍的化学反应? (4) 与这项工作密切相关的潜在高影响研究方向是什么? 该研究将在位于博尔德科罗拉多大学校园的多学科研究机构 JILA 进行,并以目前 PFC 资助下取得的广泛成果为基础。在纳开尔文分子物理学、纳米振荡器和微波场的非经典行为以及跨越十二个数量级的时间尺度上的固体和液体动力学的各种探索中取得的重大成果,都为未来四项主要活动的快速进展奠定了基础:主要活动1:从头开始构建复杂物质。该领域的工作将探索组装的新型量子多体系统中出现的丰富现象 来自超冷原子和分子。这项与凝聚态物理有密切联系的主要活动将包括偶极分子量子气体和强相互作用原子量子气体的研究。具体研究目标包括探索强相互作用粒子气体中气态和液态行为之间的边界,以及利用超冷极性分子之间的长程和各向异性相互作用实现量子物质的新态。主要活动2:利用光物质耦合工程量子多体系统。该活动将通过利用相干光物质相互作用将量子控制扩展到日益复杂的系统。项目将探索冷原子的集体光发射、纳米机械振荡器的量子运动以及材料系统中光诱导的相干性。一个示例项目是一项雄心勃勃的努力,使用纳米机械“跳水板”作为耦合介质,将微波中的非经典光子态映射到光学模式中的相应状态,反之亦然。主要活动 3:面对分子转变。在最基本的层面上,反应通过电子之间的相互作用以及电子与核运动之间的耦合进行。 JILA PFC 研究人员将在这一基本层面上探索反应物理学,目标是了解并学习控制三原子和四原子分子等小系统中的能量流。他们将重点关注三个项目:研究冷和超冷反应性分子散射、探测时间分辨核和电子动力学以及开发相干紫外到红外分子光谱。主要活动4:探索高影响协同研究方向。JILA中心理念的一个重要方面是,人们应该警惕将有趣的想法和技术“输出”到中心焦点之外的活动的机会,并导入这些想法和技术。 JILA 将探索其中的一些机会,投入一小部分中心资源来促进思想和技术的贸易。主要活动有一个共同的重点,因此有大量的知识和科学重叠,而且,如果有的话,技术重叠也更强。先前的经验表明,JILA PFC 设想的极具挑战性的目标最好通过流体协作来解决,流体协作可以利用一系列功能,例如激光频率梳、超冷原子、先进的 VUV 源、量子和超快光学、化学物理的灵敏检测方法以及计算和分析的理论方法。这种专业知识的多样性不能轻易地在单个研究者的团队中综合起来。此外,JILA PFC 依赖并不断升级共享技术基础设施,包括世界一流的机械车间以及电子和计算支持,并参与教育和推广工作的集体计划。JILA 计划将产生许多不同的更广泛的影响。它将通过开发许多新的基于激光的工具和技术,并培养许多不仅在 AMO 物理方面而且在技术交流和教学技能方面接受过严格培训的毕业生,来增强国家的技术基础设施。它将与世界各地的科学界建立联系,通过组织和举办专题研讨会、短期和长期的 JILA 访问者计划,以及通过参与 JILA 合作和跨学科研究的众多本科生、研究生和博士后研究人员,促进全领域的前沿研究。如上所述,所提出的工作涉及物理学的许多不同领域,包括材料物理学、生物物理学和纳米技术等应用领域。将理解和量子控制从少体系统扩展到多体系统肯定会影响许多应用,例如光合作用、催化材料的设计以及可再生能源的新技术。 拟议的计划还将通过强有力的本科生研究计划和主要服务于少数族裔的中学课后强化计划,吸引更多学生进入科学领域,特别是来自代表性不足的群体。它将通过各种计划促进一般科学兴趣和素养,包括非常受欢迎的学童“奇才”表演、科罗拉多大学周六物理公开演讲,以及向科罗拉多州中学生和高中生介绍科学主题的经过适当培训的研究生和博士后研究人员。它还将研究、开发和广泛传播向所有学生教授 AMO 科学的更好方法,特别是通过在线交互式模拟。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Fermi-degenerate three-dimensional optical lattice clock
- DOI:10.1126/science.aam5538
- 发表时间:2017-10-06
- 期刊:
- 影响因子:56.9
- 作者:Campbell, S. L.;Hutson, R. B.;Ye, J.
- 通讯作者:Ye, J.
New frontiers for quantum gases of polar molecules
- DOI:10.1038/nphys3985
- 发表时间:2017-01-01
- 期刊:
- 影响因子:19.6
- 作者:Moses, Steven A.;Covey, Jacob P.;Ye, Jun
- 通讯作者:Ye, Jun
One-dimensional magneto-optical compression of a cold CaF molecular beam
- DOI:10.1088/1367-2630/aa6470
- 发表时间:2017-03-27
- 期刊:
- 影响因子:3.3
- 作者:Chae, Eunmi;Anderegg, Loic;Doyle, John M.
- 通讯作者:Doyle, John M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Cornell其他文献
Eric Cornell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Cornell', 18)}}的其他基金
JILA PFC: Measurement, Manipulation, and Meaning at the Quantum Frontier
JILA PFC:量子前沿的测量、操作和意义
- 批准号:
1734006 - 财政年份:2017
- 资助金额:
$ 1685万 - 项目类别:
Cooperative Agreement
JILA AMO Physics Frontier Center
JILA AMO物理前沿中心
- 批准号:
0551010 - 财政年份:2006
- 资助金额:
$ 1685万 - 项目类别:
Cooperative Agreement
National Science Foundation Alan T. Waterman Award
美国国家科学基金会艾伦·T·沃特曼奖
- 批准号:
9725291 - 财政年份:1997
- 资助金额:
$ 1685万 - 项目类别:
Continuing Grant
相似国自然基金
四逆散抑制谷氨酸突触过度修剪重塑
PFC-DRN环路E/I平衡的抗抑郁机制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
TREM2介导小胶质细胞调控ATN-PFC环路参与气郁质对老年MCI工作记忆损伤的机制研究
- 批准号:2024Y9531
- 批准年份:2024
- 资助金额:50.0 万元
- 项目类别:省市级项目
电针抗抑郁的奖赏-反奖赏环路平衡的新机制:ATP介导的PFC谷氨酸能神经元对NAc和LHb投射的协同调控
- 批准号:82374586
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
理气化痰方介导Kal7-BDNF通路改善PFC-NAc-VTA神经环路突触可塑性治疗应激性抑郁大鼠的机制研究
- 批准号:82360921
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
柴胡加龙骨牡蛎汤调控BF-PFC神经环路干预焦虑致失眠的物质基础及作用机制研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
氮化镓交错并联图腾柱PFC变换器开路故障诊断及容错控制研究
- 批准号:52307198
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PFC-vlPAG 谷氨酸能通路在全身麻醉致意识改变过程中的作用及机制研究
- 批准号:2022JJ40397
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
孕期高盐饮食影响子代PFC神经元发育和焦虑样行为的神经机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
不同神经元亚群通过PFC-STN环路调控帕金森病步态障碍的编码规律研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
艾司氯胺酮介导 PFC 内mGluR5信号调节慢性疼痛及相关抑郁的研究
- 批准号:2022JJ80079
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Center: JILA-PFC: Comprehension and Control of Emerging Complexity at the Quantum Frontier
中心:JILA-PFC:量子前沿新兴复杂性的理解和控制
- 批准号:
2317149 - 财政年份:2023
- 资助金额:
$ 1685万 - 项目类别:
Cooperative Agreement
Role of PFC Activity in the Behavioral Deficits Induced by Maternal Separation
PFC 活性在母亲分离引起的行为缺陷中的作用
- 批准号:
10567520 - 财政年份:2023
- 资助金额:
$ 1685万 - 项目类别:
Dissecting PFC Endocannabinoid-THC -regulated circuits in movement behavior
剖析运动行为中 PFC 内源性大麻素 - THC 调节的电路
- 批准号:
10386291 - 财政年份:2022
- 资助金额:
$ 1685万 - 项目类别:
ヒト赤血球型第4世代PFC人工酸素運搬体の開発
人红细胞型第4代PFC人工氧载体的研制
- 批准号:
22K18311 - 财政年份:2022
- 资助金额:
$ 1685万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Dissecting PFC Endocannabinoid-THC -regulated circuits in movement behavior
剖析运动行为中 PFC 内源性大麻素 - THC 调节的电路
- 批准号:
10583451 - 财政年份:2022
- 资助金额:
$ 1685万 - 项目类别:
Multimodal analysis of human PFC 4 Hz rhythms in cognition and speech in PD
PD 认知和言语中人类 PFC 4 Hz 节律的多模态分析
- 批准号:
10283245 - 财政年份:2021
- 资助金额:
$ 1685万 - 项目类别:
摂取カロリー同等/PFCバランス不同食の糖尿病性腎臓病と認知機能障害に及ぼす影響
等热量摄入/PFC不平衡饮食对糖尿病肾病和认知功能障碍的影响
- 批准号:
21K11609 - 财政年份:2021
- 资助金额:
$ 1685万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Sex differences in fast-spiking interneurons promote AUD-related PFC dysfunction: remediation by modulating mGlu1 and mGlu5
快速峰值中间神经元的性别差异促进 AUD 相关的 PFC 功能障碍:通过调节 mGlu1 和 mGlu5 进行修复
- 批准号:
10686993 - 财政年份:2021
- 资助金额:
$ 1685万 - 项目类别:
Sex differences in fast-spiking interneurons promote AUD-related PFC dysfunction: remediation by modulating mGlu1 and mGlu5 - Supplement Rev
快速峰值中间神经元的性别差异促进 AUD 相关的 PFC 功能障碍:通过调节 mGlu1 和 mGlu5 进行修复 - 补充修订版
- 批准号:
10757096 - 财政年份:2021
- 资助金额:
$ 1685万 - 项目类别:
Multimodal analysis of human PFC 4 Hz rhythms in cognition and speech in PD
PD 认知和言语中人类 PFC 4 Hz 节律的多模态分析
- 批准号:
10490442 - 财政年份:2021
- 资助金额:
$ 1685万 - 项目类别: