Analysis of Genetic and Environmental Inputs into Accurate and Inaccurate Double Strand Break Repair in Plants
植物准确和不准确双链断裂修复的遗传和环境输入分析
基本信息
- 批准号:1127079
- 负责人:
- 金额:$ 60.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-01-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: J. L. Bennetzen (University of Georgia)Plants containing engineered chromosome breakage constructs will be used as a study system to investigate the nature of inaccurate repair of double strand DNA breaks (DSB), and the genetic or environmental factors that affect the nature of inaccurate repair. DSB repair, in all organisms from bacteria to plants and animals, is highly accurate. This accuracy is necessary to allow chromosomes to be replicated and passed on to subsequent generations of progeny because these breaks are so frequent and are lethal if unrepaired. However, inaccurate repair of DSB does occur, leading to small deletions, insertions or other outcomes at the break site. Some previous studies have suggested that the relative sizes and frequencies of the inaccurate DSB repair events may vary from species to species, and that this variance might be responsible for differences in the rate at which genomes change size and for differences in their rate of sequence change. This project will use a regulated DSB system, involving the enzyme I-SceI expressed off a transgenic construct in plants that are then crossed to other plants that have a cutting site for I-SceI. The progeny of this cross have been shown, in preliminary experiments, to undergo DSB at the I-SceI site, and to sometimes have inaccurate repair at that site. The I-SceI site in many of these progeny plants will be DNA sequenced by the investigators to see what kind of deletions, insertions, et cetera, are found at the cleavage site. This work is being done in four grass species (maize, pearl millet, rice, and sorghum), with very different genomic sizes and genomic stability, to see if this influences the nature or frequency of inaccurate DSB repair. The I-SceI sites are also integrated at various different chromosomal locations in different plants, so one can investigate chromosome position effects on repair outcomes. Finally, the investigators will determine the nature of inaccurate DSB repair at different times in development, under different environmental stresses (e.g., high UV light intensity or high ozone levels) and in genetic backgrounds that have known mutations in DNA repair processes or chromatin structure. Taken together, these studies will provide insights into how plant genomes evolve, and particularly how DSB repair participates in this process, to generate the natural diversity on which natural selection acts. This research will provide a powerful approach, and numerous novel insights, for understanding how genomes change. This will lead to a better understanding of how genetic diversity can be interpreted and influenced by biologists. The many direct participants in the project, especially the postdoctoral fellow, graduate student and undergraduate students, will receive direct training in a multi-disciplinary approach to a core question in modern genetics: how do genomes change, and what effect does that change have on current and future function of genes in that genome. The description of the project and of the results will be available at a web site that will be created for this project, with a presentation style that makes the information digestible for all levels of interested parties, from K-12 students, to the general public, to active research scientists. Raw data and the most advanced results will also be provided in public-accessible databases (e.g., GenBank for sequence information and peer-reviewed publications for detailed analysis), including the project web site. Biological materials (seeds of transgenic plants, constructs for the I-SceI approach, etc.) will be available from the PI's lab until the time that some more permanent maintenance resource can be identified. Understanding DNA variation, particularly the mechanisms and rates/outcomes, is vital for any mature understanding of genetics or genomes, and is shared by animal, human, plant, fungal, viral and microbial researchers, so it is expected that the training, outreach and data enrichment components of this project will benefit the broadest scientific community and general public.
PI:J.L. Bennetzen(格鲁吉亚大学)含有工程染色体断裂构建体的植物将被用作研究系统,以研究双链DNA断裂(DSB)的不准确修复的性质,以及影响不准确修复性质的遗传或环境因素。在从细菌到植物和动物的所有生物体中,DSB修复是高度准确的。 这种准确性是允许染色体复制并传递给后代的必要条件,因为这些断裂是如此频繁,如果不修复是致命的。 然而,DSB的不准确修复确实会发生,导致断裂位点处的小缺失、插入或其他结果。 一些先前的研究表明,不准确的DSB修复事件的相对大小和频率可能因物种而异,并且这种差异可能是基因组大小变化速率差异和序列变化速率差异的原因。 该项目将使用一个受调控的DSB系统,涉及在植物中表达的酶I-SceI,然后将其与具有I-SceI切割位点的其他植物杂交。 在初步实验中,这种杂交的后代在I-SceI位点发生DSB,有时在该位点有不准确的修复。 研究人员将对许多这些后代植物中的I-SceI位点进行DNA测序,以查看在切割位点处发现了何种缺失、插入等。 这项工作正在四种草(玉米,珍珠粟,水稻和高粱)中进行,这些草具有非常不同的基因组大小和基因组稳定性,以观察这是否会影响不准确的DSB修复的性质或频率。 I-SceI位点也整合在不同植物的不同染色体位置,因此可以研究染色体位置对修复结果的影响。 最后,研究人员将确定在开发的不同时间,在不同的环境压力下(例如,高UV光强度或高臭氧水平)和在DNA修复过程或染色质结构中具有已知突变的遗传背景中。 总之,这些研究将提供深入了解植物基因组如何进化,特别是DSB修复如何参与这一过程,以产生自然选择作用的自然多样性。这项研究将为理解基因组如何变化提供一种强有力的方法和许多新的见解。 这将导致更好地理解生物学家如何解释和影响遗传多样性。 该项目的许多直接参与者,特别是博士后研究员,研究生和本科生,将接受多学科方法的直接培训,以解决现代遗传学的核心问题:基因组如何变化,以及这种变化对该基因组中基因的当前和未来功能有什么影响。 该项目的说明和结果将在一个网站上提供,该网站将为该项目创建,其介绍风格使信息易于各级感兴趣的各方,从K-12学生到普通公众,再到积极的研究科学家。 原始数据和最先进的结果也将在公众可访问的数据库中提供(例如,基因库的序列信息和同行评审的出版物的详细分析),包括该项目的网站。 生物材料(转基因植物的种子、I-SceI方法的构建体等)PI的实验室将提供,直到可以确定一些更永久的维护资源。 了解DNA变异,特别是机制和速率/结果,对于任何成熟的遗传学或基因组理解至关重要,并且由动物,人类,植物,真菌,病毒和微生物研究人员共享,因此预计该项目的培训,推广和数据丰富部分将使最广泛的科学界和公众受益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Bennetzen其他文献
Jeffrey Bennetzen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Bennetzen', 18)}}的其他基金
Characterizing the Wheat Genome by Random Sample Sequencing
通过随机样本测序表征小麦基因组
- 批准号:
0501814 - 财政年份:2005
- 资助金额:
$ 60.19万 - 项目类别:
Continuing Grant
SGER: Gene Enrichment Sequencing of the Maize Genome with Hypomethylated Partial Restriction Libraries
SGER:利用低甲基化部分限制性文库对玉米基因组进行基因富集测序
- 批准号:
0236505 - 财政年份:2002
- 资助金额:
$ 60.19万 - 项目类别:
Standard Grant
Assessment of Gene Content, Colinearity and Evolution in Barley, Maize, Rice, Sorghum and Wheat
大麦、玉米、水稻、高粱和小麦的基因含量、共线性和进化评估
- 批准号:
9975793 - 财政年份:1999
- 资助金额:
$ 60.19万 - 项目类别:
Standard Grant
Acquisition of Equipment for a Comprehensive Agricultural Genomics Laboratory at Purdue University
为普渡大学综合农业基因组实验室购置设备
- 批准号:
9871040 - 财政年份:1998
- 资助金额:
$ 60.19万 - 项目类别:
Standard Grant
Molecular Genetic Analysis of Rp1-Mediated Disease Resistance in Maize
Rp1介导的玉米抗病性的分子遗传学分析
- 批准号:
9018685 - 财政年份:1991
- 资助金额:
$ 60.19万 - 项目类别:
Standard Grant
US-UK Cooperative Research: Generation and Characterizationof Transgenic Plants Carrying the Maize Transposable Elements Ac
美英合作研究:携带玉米转座因子 Ac 的转基因植物的产生和表征
- 批准号:
8922448 - 财政年份:1990
- 资助金额:
$ 60.19万 - 项目类别:
Standard Grant
Presidential Young Investigator Award
总统青年研究员奖
- 批准号:
8552557 - 财政年份:1986
- 资助金额:
$ 60.19万 - 项目类别:
Continuing Grant
相似海外基金
Genetic analysis of environmental control of inflorescence development in perennial Arabis alpina
多年生高山南芥花序发育环境控制的遗传分析
- 批准号:
460364760 - 财政年份:2021
- 资助金额:
$ 60.19万 - 项目类别:
WBP Position
Single-cell genetic analysis of the pathogenic role of neuronal genomic instability in environmental toxicant exposure
环境毒物暴露中神经元基因组不稳定性致病作用的单细胞遗传学分析
- 批准号:
10057617 - 财政年份:2020
- 资助金额:
$ 60.19万 - 项目类别:
Single-cell genetic analysis of the pathogenic role of neuronal genomic instability in environmental toxicant exposure
环境毒物暴露中神经元基因组不稳定性致病作用的单细胞遗传学分析
- 批准号:
10267733 - 财政年份:2020
- 资助金额:
$ 60.19万 - 项目类别:
Sex-specific environmental and genetic determinants of COPD in middle-aged and older Canadian adults: An analysis of CLSA data
加拿大中老年人慢性阻塞性肺病的性别特异性环境和遗传决定因素:里昂证券数据分析
- 批准号:
389422 - 财政年份:2018
- 资助金额:
$ 60.19万 - 项目类别:
Operating Grants
Analysis of genetic-environmental interactions during the onset of cleft palate
腭裂发病过程中遗传-环境相互作用的分析
- 批准号:
18K09776 - 财政年份:2018
- 资助金额:
$ 60.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of population genetic structure by environmental DNA and its application to conservation biology
环境DNA分析种群遗传结构及其在保护生物学中的应用
- 批准号:
18K11733 - 财政年份:2018
- 资助金额:
$ 60.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Relationship among symptoms of developmental disorders and genetic and environmental risk factors based on covariance structure analysis
基于协方差结构分析的发育障碍症状与遗传和环境危险因素的关系
- 批准号:
17H04137 - 财政年份:2017
- 资助金额:
$ 60.19万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Identification of host-specific viral genetic markers for fecal contamination analysis of environmental water
鉴定宿主特异性病毒遗传标记,用于环境水的粪便污染分析
- 批准号:
17H03332 - 财政年份:2017
- 资助金额:
$ 60.19万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of a new method for environmental DNA analysis for the evaluation of intraspecific genetic diversity of fish population
开发环境DNA分析新方法以评估鱼类种群种内遗传多样性
- 批准号:
16K18610 - 财政年份:2016
- 资助金额:
$ 60.19万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Analysis by the genetic and environmental approaches for the elucidation of masticatory muscle tendon-aponeurosis hyperplasia
通过遗传和环境方法分析阐明咀嚼肌腱腱膜增生
- 批准号:
16K11699 - 财政年份:2016
- 资助金额:
$ 60.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)