Adaptive Dynamic Programming-based Control of Unknown Networked Control Systems
基于自适应动态规划的未知网络控制系统控制
基本信息
- 批准号:1128281
- 负责人:
- 金额:$ 34.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-01 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractThe overall objective of this study is to provide online robust adaptive dynamic programming (ADP) based optimal controllers with guaranteed performance, supported by a rigorous design and mathematical framework, and without utilizing policy and value iterations, for unknown linear and nonlinear networked control systems (NCS). The approach taken here employs adaptive network learning as a fundamental block and utilizes past history of cost-to-go information, and updates the control input once a sampling interval in a forward-in-time manner without using a system model and offline learning phase for the NNs.Intellectual MeritThe proposed research presents an opportunity to deal with a more powerful and unified paradigm of complex learning problems and envisions a brain-like controller. The proposed effort will advance the state of the art in ADP for control and guarantees stability and performance in the presence of not only uncertain system dynamics and disturbances, but also network imperfections such as random delays, packet losses and quantization errors without using iterative approach. Broader ImpactThis effort would directly impact all real-time practical systems such as the efficient operation and energy security of the smart grid, near zero-emission automotive control systems, and next generation manufacturing system. Such control schemes are required for global competitiveness of the US industry. Technology transfer will occur through the NSF Industry/University Cooperative Research Center on Intelligent Maintenance Systems. Within the research community, this work will inspire more theoretical results while providing training opportunities to next generation students, future scientists and engineers including from underrepresented groups.
本文的总体目标是为未知的线性和非线性网络控制系统(NCS)提供在线鲁棒自适应动态规划(ADP)最优控制器,该控制器由严格的设计和数学框架支持,不需要策略和数值迭代。这里采用的方法采用自适应网络学习作为基本块,并利用过去的成本历史信息,和更新控制输入一次采样间隔在一个向前的时间方式,而不使用系统模型和离线学习阶段的神经网络。智力MeritThe拟议的研究提出了一个机会,以处理一个更强大的和统一的范式复杂的学习问题,并设想一个大脑-就像控制器。所提出的努力将推进最先进的ADP控制和保证稳定性和性能的存在下,不仅不确定的系统动态和干扰,但也网络的不完善,如随机延迟,丢包和量化误差,而不使用迭代方法。 更广泛的影响这一努力将直接影响所有实时实用系统,如智能电网的高效运行和能源安全,近零排放汽车控制系统和下一代制造系统。这种控制计划是美国工业在全球竞争力所必需的。技术转让将通过NSF工业/大学智能维护系统合作研究中心进行。在研究界,这项工作将激发更多的理论成果,同时为下一代学生,未来的科学家和工程师提供培训机会,包括来自代表性不足的群体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jagannathan Sarangapani其他文献
Asymptotic Tracking Controller Design for Nonlinear Systems With Guaranteed Performance
具有保证性能的非线性系统渐近跟踪控制器设计
- DOI:
10.1109/tcyb.2017.2726039 - 发表时间:
2018 - 期刊:
- 影响因子:11.8
- 作者:
Fan Bo;Yang Qinmin;Jagannathan Sarangapani;Sun Youxian - 通讯作者:
Sun Youxian
Output-Constrained Control of Nonaffine Multiagent Systems With Partially Unknown Control Directions
部分未知控制方向的非仿射多智能体系统的输出受限控制
- DOI:
10.1109/tac.2019.2892391 - 发表时间:
2019 - 期刊:
- 影响因子:6.8
- 作者:
Fan Bo;Yang Qinmin;Jagannathan Sarangapani;Sun Youxian - 通讯作者:
Sun Youxian
Jagannathan Sarangapani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jagannathan Sarangapani', 18)}}的其他基金
Event Triggered Unknown Networked Control System Design by using Adaptive Dynamic Programming
采用自适应动态规划的事件触发未知网络控制系统设计
- 批准号:
1406533 - 财政年份:2014
- 资助金额:
$ 34.61万 - 项目类别:
Standard Grant
I/UCRC: Collaborative Research on Coupled Models for Prognostics and Health Management
I/UCRC:预测与健康管理耦合模型的合作研究
- 批准号:
1230886 - 财政年份:2012
- 资助金额:
$ 34.61万 - 项目类别:
Standard Grant
I/UCRC CGI: Industry/University Cooperative Research Center for Intelligent Maintenance Systems Center: Five Year Renewal Phase III
I/UCRC CGI:智能维护系统产学合作研究中心中心:五年续展第三期
- 批准号:
1134721 - 财政年份:2011
- 资助金额:
$ 34.61万 - 项目类别:
Continuing Grant
Smart Engines: Fuel Flexible Engine Control using Adaptive Neural Network Critics
智能发动机:使用自适应神经网络批评来实现灵活的发动机控制
- 批准号:
0901562 - 财政年份:2009
- 资助金额:
$ 34.61万 - 项目类别:
Standard Grant
Katrina SGER: Dynamic Programming-based Health Monitoring and Prognostics for Levee and Communication Infrastructures
Katrina SGER:基于动态规划的堤坝和通信基础设施健康监测和预测
- 批准号:
0633769 - 财政年份:2006
- 资助金额:
$ 34.61万 - 项目类别:
Standard Grant
Robust Adaptive Critic Neural Network Control of a Class of Nonlinear Dynamic Systems
一类非线性动态系统的鲁棒自适应批评神经网络控制
- 批准号:
0621924 - 财政年份:2006
- 资助金额:
$ 34.61万 - 项目类别:
Standard Grant
Industry/University Cooperative Research Center for Intelligent Maintenance Systems (IMS): FIVE-Year Renewal Proposal
智能维护系统产学合作研究中心(IMS):五年更新提案
- 批准号:
0639182 - 财政年份:2006
- 资助金额:
$ 34.61万 - 项目类别:
Continuing Grant
Planning Grant: Proposal for Intelligent Maintenance Systems Center Site
规划补助金:智能维护系统中心站点提案
- 批准号:
0531580 - 财政年份:2005
- 资助金额:
$ 34.61万 - 项目类别:
Standard Grant
Adaptive Neural Network Architectures For Emission Control of Engines (TSE-03G)
用于发动机排放控制的自适应神经网络架构 (TSE-03G)
- 批准号:
0327877 - 财政年份:2003
- 资助金额:
$ 34.61万 - 项目类别:
Continuing Grant
CAREER: Sensor-Based Adaptive Control and Prognosis of Complex Distributed Systems
职业:复杂分布式系统的基于传感器的自适应控制和预测
- 批准号:
0296191 - 财政年份:2001
- 资助金额:
$ 34.61万 - 项目类别:
Standard Grant
相似国自然基金
Dynamic Credit Rating with Feedback Effects
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
An Adaptive Robust Dynamic Programming Approach for Decision Making under Model Uncertainty
模型不确定性下决策的自适应鲁棒动态规划方法
- 批准号:
2440945 - 财政年份:2020
- 资助金额:
$ 34.61万 - 项目类别:
Studentship
Collaborative Research: Autonomous Hierarchical Adaptive Dynamic Programming for Decision Making in Complex Environment
协作研究:复杂环境下自主分层自适应动态规划决策
- 批准号:
1917276 - 财政年份:2019
- 资助金额:
$ 34.61万 - 项目类别:
Standard Grant
Collaborative Research: Autonomous Hierarchical Adaptive Dynamic Programming for Decision Making in Complex Environment
协作研究:复杂环境下自主分层自适应动态规划决策
- 批准号:
1917275 - 财政年份:2019
- 资助金额:
$ 34.61万 - 项目类别:
Standard Grant
Collaborative Research: Autonomous Hierarchical Adaptive Dynamic Programming for Decision Making in Complex Environment
协作研究:复杂环境下自主分层自适应动态规划决策
- 批准号:
1947419 - 财政年份:2019
- 资助金额:
$ 34.61万 - 项目类别:
Standard Grant
RII Track-4: A Reflective Learning and Association Control Framework based on Adaptive Dynamic Programming: Architecture and Applications in Robotics
RII Track-4:基于自适应动态规划的反思性学习和关联控制框架:机器人技术的架构和应用
- 批准号:
1833005 - 财政年份:2018
- 资助金额:
$ 34.61万 - 项目类别:
Standard Grant
Biologically-Inspired Robust Adaptive Dynamic Programming for Continuous-Time Stochastic Systems
连续时间随机系统的受生物学启发的鲁棒自适应动态规划
- 批准号:
1501044 - 财政年份:2015
- 资助金额:
$ 34.61万 - 项目类别:
Standard Grant
Collaborative Research: A Distributed Approximate Dynamic Programming Approach for Robust Adaptive Control of Multiscale Dynamical Systems
协作研究:多尺度动力系统鲁棒自适应控制的分布式近似动态规划方法
- 批准号:
1556900 - 财政年份:2015
- 资助金额:
$ 34.61万 - 项目类别:
Standard Grant
Adaptive dynamic programming for uncertain nonlinear systems through coupling of nonlinear analysis and data-based learning
通过非线性分析和基于数据的学习的耦合对不确定非线性系统进行自适应动态规划
- 批准号:
1509516 - 财政年份:2015
- 资助金额:
$ 34.61万 - 项目类别:
Standard Grant
Event Triggered Unknown Networked Control System Design by using Adaptive Dynamic Programming
采用自适应动态规划的事件触发未知网络控制系统设计
- 批准号:
1406533 - 财政年份:2014
- 资助金额:
$ 34.61万 - 项目类别:
Standard Grant
New Adaptive Dynamic Programming Structures From Neurocognitive Psychology and Graphical Games
来自神经认知心理学和图形游戏的新自适应动态编程结构
- 批准号:
1405173 - 财政年份:2014
- 资助金额:
$ 34.61万 - 项目类别:
Standard Grant














{{item.name}}会员




