Biologically-Inspired Robust Adaptive Dynamic Programming for Continuous-Time Stochastic Systems

连续时间随机系统的受生物学启发的鲁棒自适应动态规划

基本信息

  • 批准号:
    1501044
  • 负责人:
  • 金额:
    $ 28.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

The project aims to develop tools and methods, inspired by neurobiology, for addressing the need in building brain-like reinforcement learning systems and, ultimately, contributing to the understanding of brain functions. The project seeks to address fundamentally challenging issues arising from the robust optimal management of large complex systems subject to stochastic effects, nonlinearity, and dynamic uncertainties. Research findings from this project will contribute new solutions to emerging engineering applications such as the smart electricity grid, robotics, and intelligent transportation systems. The proposed research will have a substantial direct impact upon education at the PI's institution. The interdisciplinary nature of the project should appeal to students from several departments.The project team will work on stochastic variants of adaptive dynamic programming (ADP) for continuous-time systems subject to stochastic and dynamic disturbances. ADP is a practically sound data-driven, non-model based approach for optimal control design in complex systems. ADP has been extensively studied for Markov decision processes, focusing mostly on discrete and finite state-space, and for deterministic (discrete- and continuous-time) dynamic systems. Stability and robustness issues in the presence of dynamic uncertainties are seldom addressed systematically. For problems involving complex modern engineering systems or biological systems, for which stability is an important concern, straightforward application of the existing ADP results does not seem productive or even likely to be successful. Hence, it is necessary to develop novel tools and methods for ADP design of general stochastic systems in continuous-time and continuous state-space, with rigorous stability and convergence analysis. The novelty of the proposed research consists of application and extension of techniques from reinforcement learning, stochastic systems theory, and nonlinear control theory. The specific goals of the proposal are the development of tools and methods for stochastic adaptive dynamic programming for linear and nonlinear stochastic systems, stochastic adaptive optimal control with robustness to dynamic uncertainties, and application to human motor systems. Rigorous stability proofs, convergence analysis of learning algorithms, and robustness analysis will be pursued. Important classes of continuous-time linear and nonlinear models with multiplicative and additive noise will be studied, along with non-model based, stochastic optimal controller designs. Beyond engineering applications, it is believed that bringing together ADP and research in computational neuroscience may yield new methodologies for the diagnosis and treatment of neurodegenerative genetic disorders that affect muscle coordination. One such medical condition is Parkinson's disease, which affects approximately seven million people globally, and one million in the United States. Generalizing the PI's recent work in linear stochastic variants of robust adaptive dynamic programming can lead to a potentially new computational mechanism for human motor control.
该项目旨在开发受神经生物学启发的工具和方法,以解决构建类脑强化学习系统的需求,并最终有助于理解大脑功能。该项目旨在解决从根本上具有挑战性的问题,这些问题来自于随机效应、非线性和动态不确定性的大型复杂系统的鲁棒优化管理。该项目的研究成果将为智能电网、机器人和智能交通系统等新兴工程应用提供新的解决方案。拟议的研究将对PI所在机构的教育产生实质性的直接影响。该项目的跨学科性质应该吸引来自几个系的学生。项目团队将研究受随机和动态干扰的连续系统的自适应动态规划(ADP)的随机变体。ADP是一种实际可靠的数据驱动、非基于模型的复杂系统最优控制设计方法。ADP在马尔可夫决策过程中得到了广泛的研究,主要集中在离散和有限状态空间,以及确定性(离散和连续时间)动态系统。在存在动态不确定性的情况下,稳定性和鲁棒性问题很少得到系统的解决。对于涉及复杂的现代工程系统或生物系统的问题,稳定性是一个重要的问题,直接应用现有的ADP结果似乎并不有效,甚至不太可能成功。因此,有必要开发具有严格稳定性和收敛性分析的连续时间和连续状态空间的一般随机系统的ADP设计的新工具和方法。该研究的新颖之处在于对强化学习、随机系统理论和非线性控制理论等技术的应用和扩展。该提案的具体目标是开发线性和非线性随机系统的随机自适应动态规划的工具和方法,具有动态不确定性鲁棒性的随机自适应最优控制,以及在人体运动系统中的应用。严谨的稳定性证明,学习算法的收敛性分析,以及鲁棒性分析将被追求。将研究具有乘性和加性噪声的重要连续时间线性和非线性模型,以及非基于模型的随机最优控制器设计。除了工程应用之外,人们相信,将ADP和计算神经科学的研究结合起来,可能会产生新的方法,用于诊断和治疗影响肌肉协调的神经退行性遗传疾病。帕金森氏症就是这样一种疾病,它影响着全球大约700万人,在美国有100万人。将PI最近的工作推广到鲁棒自适应动态规划的线性随机变量中,可以为人类运动控制提供一种潜在的新的计算机制。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Continuous-Time Robust Dynamic Programming
连续时间鲁棒动态规划
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhong-Ping Jiang其他文献

Hierarchical fusion of optical and dual-polarized SAR on impervious surface mapping at city scale
光学和双偏振 SAR 的分层融合在城市尺度不透水表面测绘上的应用
Agallolides A-M, including two rearranged ent-atisanes featuring a bicyclo[3.2.1]octane motif, from the Chinese Excoecaria agallocha
Agallolides A-M,包括两个重排的 ent-atisane,具有双环[3.2.1]辛烷基序,来自中国 Excoecaria agallocha
  • DOI:
    10.1016/j.bioorg.2020.104206
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Zhong-Ping Jiang;Yi Yu;Li Shen
  • 通讯作者:
    Li Shen
Distributed Global Output-Feedback Control for a Class of Euler–Lagrange Systems
一类欧拉-拉格朗日系统的分布式全局输出反馈控制
  • DOI:
    10.1109/tac.2017.2696705
  • 发表时间:
    2017-08
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Qingkai Yang;Hao Fang;Jie Chen;Zhong-Ping Jiang;Ming Cao
  • 通讯作者:
    Ming Cao
A Small-Gain Approach to Robust Event-Triggered Control of Nonlinear Systems
非线性系统鲁棒事件触发控制的小增益方法
Multiattention Generative Adversarial Network for Remote Sensing Image Super-Resolution
用于遥感图像超分辨率的多注意生成对抗网络

Zhong-Ping Jiang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhong-Ping Jiang', 18)}}的其他基金

Collaborative Research: CPS: Small: An Integrated Reactive and Proactive Adversarial Learning for Cyber-Physical-Human Systems
协作研究:CPS:小型:网络-物理-人类系统的集成反应式和主动式对抗学习
  • 批准号:
    2227153
  • 财政年份:
    2022
  • 资助金额:
    $ 28.46万
  • 项目类别:
    Standard Grant
Collaborative Research: EPCN: Distributed Optimization-based Control of Large-Scale Nonlinear Systems with Uncertainties and Application to Robotic Networks
合作研究:EPCN:基于分布式优化的大型不确定性非线性系统控制及其在机器人网络中的应用
  • 批准号:
    2210320
  • 财政年份:
    2022
  • 资助金额:
    $ 28.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Designs and Theory for Event-Triggered Control with Marine Robotic Applications
合作研究:海洋机器人应用事件触发控制的设计和理论
  • 批准号:
    2009644
  • 财政年份:
    2020
  • 资助金额:
    $ 28.46万
  • 项目类别:
    Standard Grant
Learning-based Adaptive Optimal Control Principles for Human Movements
基于学习的人体运动自适应最优控制原理
  • 批准号:
    1903781
  • 财政年份:
    2019
  • 资助金额:
    $ 28.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Hybrid Small-Gain Theorems for Nonlinear Networked and Quantized Control Systems
合作研究:非线性网络和量化控制系统的混合小增益定理
  • 批准号:
    1230040
  • 财政年份:
    2012
  • 资助金额:
    $ 28.46万
  • 项目类别:
    Standard Grant
AIS: Entanglement of Approximate Dynamic Programming and Modern Nonlinear Control for Complex Systems
AIS:复杂系统的近似动态规划与现代非线性控制的纠缠
  • 批准号:
    1101401
  • 财政年份:
    2011
  • 资助金额:
    $ 28.46万
  • 项目类别:
    Standard Grant
Collaborative Research: New Tools for Nonlinear Control Systems Analysis and Synthesis
合作研究:非线性控制系统分析与综合的新工具
  • 批准号:
    0906659
  • 财政年份:
    2009
  • 资助金额:
    $ 28.46万
  • 项目类别:
    Standard Grant
Nonlinear Ship Control: An Opportunity for Applied Mathematicians
非线性船舶控制:应用数学家的机会
  • 批准号:
    0504462
  • 财政年份:
    2005
  • 资助金额:
    $ 28.46万
  • 项目类别:
    Standard Grant
U.S.-China Cooperative Research: Control of complex nonlinear systems with applications
中美合作研究:复杂非线性系统控制及其应用
  • 批准号:
    0408925
  • 财政年份:
    2004
  • 资助金额:
    $ 28.46万
  • 项目类别:
    Standard Grant
CAREER: Robust Nonlinear Control: Problems and Challenges from Communication Networks
职业:鲁棒非线性控制:通信网络的问题和挑战
  • 批准号:
    0093176
  • 财政年份:
    2001
  • 资助金额:
    $ 28.46万
  • 项目类别:
    Continuing Grant

相似国自然基金

受轻质多孔竹子茎秆启发的梯度分形薄 壁吸能结构仿生设计理论及优化方法
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
脑启发的大规模脉冲神经网络算法与硬件设计
  • 批准号:
    D25F020001
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
折纸结构启发的弹性波模态转换器件设计与应用
  • 批准号:
    Z25A020011
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
环境摩擦化学启发绿色膜分离理论
  • 批准号:
    2025JJ40044
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于脑启发的忆阻混合神经形态计算系统关键技术研究
  • 批准号:
    ZYQ25F020001
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
深海极端环境下生物启发的复合材料仿生设计和力学评价
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
物理散射机理启发的可解释极化SAR目标识别网络研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于生物盔甲的大变形大承载蒙皮机构综合设计方法研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
类脑启发的新型具身智能算法
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
DNA碱基配对启发的自修复水凝胶负载Exo@Cur 通 过 CCL2/CCR2 通路促进穿支皮瓣血供扩展研究
  • 批准号:
    2024JJ5478
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Design principles for robust exploration capability in unknown environments inspired by centipede antennal sensing
受蜈蚣触角传感启发,在未知环境中实现强大探索能力的设计原则
  • 批准号:
    23K13349
  • 财政年份:
    2023
  • 资助金额:
    $ 28.46万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: SHF: Medium: Analog EDA-Inspired Methods for Efficient and Robust Neural Network Design
合作研究:SHF:媒介:用于高效、鲁棒神经网络设计的模拟 EDA 启发方法
  • 批准号:
    2107321
  • 财政年份:
    2021
  • 资助金额:
    $ 28.46万
  • 项目类别:
    Continuing Grant
Collaborative Reserach: SHF:Medium: Analog EDA-Inspired Methods for Efficient and Robust Neural Network Designs
协作研究:SHF:Medium:用于高效、鲁棒神经网络设计的模拟 EDA 启发方法
  • 批准号:
    2107373
  • 财政年份:
    2021
  • 资助金额:
    $ 28.46万
  • 项目类别:
    Continuing Grant
Turning Theory into Practice: Robust Hierarchical Biomimetic Composites by Design using Direct Write Assembly and Biomineralization-Inspired Interfaces
将理论转化为实践:使用直接写入组装和生物矿化启发的接口设计稳健的分层仿生复合材料
  • 批准号:
    RGPIN-2016-03942
  • 财政年份:
    2021
  • 资助金额:
    $ 28.46万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: SHF: Medium: Analog EDA-Inspired Methods for Efficient and Robust Neural Network Design
合作研究:SHF:媒介:用于高效、鲁棒神经网络设计的模拟 EDA 启发方法
  • 批准号:
    2107189
  • 财政年份:
    2021
  • 资助金额:
    $ 28.46万
  • 项目类别:
    Continuing Grant
Immune-inspired approaches to explainable and robust deep learning models
受免疫启发的方法可解释且稳健的深度学习模型
  • 批准号:
    2602590
  • 财政年份:
    2021
  • 资助金额:
    $ 28.46万
  • 项目类别:
    Studentship
Physiologically inspired robust electro-optical autofocals (TRA (T01*))
受生理启发的强大光电自动对焦 (TRA (T01*))
  • 批准号:
    452314391
  • 财政年份:
    2021
  • 资助金额:
    $ 28.46万
  • 项目类别:
    Collaborative Research Centres (Transfer Project)
Turning Theory into Practice: Robust Hierarchical Biomimetic Composites by Design using Direct Write Assembly and Biomineralization-Inspired Interfaces
将理论转化为实践:使用直接写入组装和生物矿化启发的接口设计稳健的分层仿生复合材料
  • 批准号:
    RGPIN-2016-03942
  • 财政年份:
    2020
  • 资助金额:
    $ 28.46万
  • 项目类别:
    Discovery Grants Program - Individual
Robust Designs Inspired by Biological Chiral Structures
受生物手性结构启发的稳健设计
  • 批准号:
    DE200100887
  • 财政年份:
    2020
  • 资助金额:
    $ 28.46万
  • 项目类别:
    Discovery Early Career Researcher Award
Turning Theory into Practice: Robust Hierarchical Biomimetic Composites by Design using Direct Write Assembly and Biomineralization-Inspired Interfaces
将理论转化为实践:使用直接写入组装和生物矿化启发的接口设计稳健的分层仿生复合材料
  • 批准号:
    RGPIN-2016-03942
  • 财政年份:
    2019
  • 资助金额:
    $ 28.46万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了