Adaptive Neural Network Architectures For Emission Control of Engines (TSE-03G)

用于发动机排放控制的自适应神经网络架构 (TSE-03G)

基本信息

项目摘要

The goal of this project is to provide the next generation emission controller for engines with adaptation, optimization, and learning so as to achieve low NOx and improved fuel economy. The controller will guarantee performance in the presence of unknown nonlinearities, feedback delays, and is supported by a rigorous design and mathematical framework. Specific objectives to support that goal are:1. Develop a robust adaptive NN control scheme for SI engines that would minimize the effect cyclic dispersion at very lean operation (equivalence ratio =0.7) by selecting appropriate feedback parameters.2. Study and model the complex dynamics in cyclic output for SI engines under the influence of high-levels of EGR. Investigate potential for reducing NOx over 50% below current EGR systems.3. Develop a robust adaptive critic NN EGR control scheme that would minimize the effect of cyclic dispersion and would allow satisfactory performance in low NOx regimes via appropriate feedback. Provide methodology to integrate combustion stability with high levels of EGR in SI engines.4. Simulate and verify the EGR and lean stability controller performance on an experimentally validated model. Demonstrate the controller schemes on a single cylinder engine in the laboratory.5. Investigate the complex dynamics in output for diesel engines under the influence of high levels of EGR with an objective of reducing the NOx over 50% with minimal particulate matter. Provide recommendations about the applicability of the proposed EGR controllers for diesel engines.These projects will be pursued in collaboration with organizations such as Caterpillar, Inc. and Oak Ridge National Laboratory. These areas of research could lead to significant advances in the development of advanced control schemes for non-strict feedback nonlinear systems such as next generation spark ignition, diesel as well as nontraditional engines such as homogeneous charge compression ignition, direct injection spark ignition and hybrid engines (electric power and gasoline).
该项目的目标是为发动机提供具有自适应、优化和学习功能的下一代排放控制器,以实现低NOx和提高燃油经济性。该控制器将保证在未知的非线性,反馈延迟的存在下的性能,并支持一个严格的设计和数学框架。支持这一目标的具体目标是:1。为火花点火发动机开发了一种鲁棒的自适应神经网络控制方案,通过选择合适的反馈参数,使发动机在非常稀薄的工况(当量比=0.7)下循环弥散的影响最小.研究和模拟高EGR水平影响下SI发动机循环输出的复杂动态特性。研究降低NOx的潜力,使其低于当前EGR系统50%以上。开发一种鲁棒的自适应临界神经网络EGR控制方案,该方案将使循环分散的影响最小化,并通过适当的反馈在低NOx状态下实现令人满意的性能。提供了一种方法来整合燃烧稳定性与高水平的废气再循环在SI发动机。在经过实验验证的模型上模拟并验证EGR和稀燃稳定性控制器的性能。在实验室中以单缸发动机为例演示控制器方案.研究柴油发动机在高水平EGR影响下的复杂动力学输出,目标是在最小颗粒物的情况下减少NOx超过50%。就柴油发动机EGR控制器的适用性提供建议。这些项目将与卡特彼勒公司等组织合作进行。和橡树岭国家实验室。这些研究领域可能会导致非严格反馈非线性系统,如下一代火花点火,柴油以及非传统发动机,如均质充量压缩点火,直接喷射火花点火和混合动力发动机(电力和汽油)的先进控制方案的发展取得重大进展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jagannathan Sarangapani其他文献

Asymptotic Tracking Controller Design for Nonlinear Systems With Guaranteed Performance
具有保证性能的非线性系统渐近跟踪控制器设计
  • DOI:
    10.1109/tcyb.2017.2726039
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    11.8
  • 作者:
    Fan Bo;Yang Qinmin;Jagannathan Sarangapani;Sun Youxian
  • 通讯作者:
    Sun Youxian
Output-Constrained Control of Nonaffine Multiagent Systems With Partially Unknown Control Directions
部分未知控制方向的非仿射多智能体系统的输出受限控制
  • DOI:
    10.1109/tac.2019.2892391
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Fan Bo;Yang Qinmin;Jagannathan Sarangapani;Sun Youxian
  • 通讯作者:
    Sun Youxian

Jagannathan Sarangapani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jagannathan Sarangapani', 18)}}的其他基金

Event Triggered Unknown Networked Control System Design by using Adaptive Dynamic Programming
采用自适应动态规划的事件触发未知网络控制系统设计
  • 批准号:
    1406533
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
I/UCRC: Collaborative Research on Coupled Models for Prognostics and Health Management
I/UCRC:预测与健康管理耦合模型的合作研究
  • 批准号:
    1230886
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Adaptive Dynamic Programming-based Control of Unknown Networked Control Systems
基于自适应动态规划的未知网络控制系统控制
  • 批准号:
    1128281
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
I/UCRC CGI: Industry/University Cooperative Research Center for Intelligent Maintenance Systems Center: Five Year Renewal Phase III
I/UCRC CGI:智能维护系统产学合作研究中心中心:五年续展第三期
  • 批准号:
    1134721
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Smart Engines: Fuel Flexible Engine Control using Adaptive Neural Network Critics
智能发动机:使用自适应神经网络批评来实现灵活的发动机控制
  • 批准号:
    0901562
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Katrina SGER: Dynamic Programming-based Health Monitoring and Prognostics for Levee and Communication Infrastructures
Katrina SGER:基于动态规划的堤坝和通信基础设施健康监测和预测
  • 批准号:
    0633769
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Robust Adaptive Critic Neural Network Control of a Class of Nonlinear Dynamic Systems
一类非线性动态系统的鲁棒自适应批评神经网络控制
  • 批准号:
    0621924
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Industry/University Cooperative Research Center for Intelligent Maintenance Systems (IMS): FIVE-Year Renewal Proposal
智能维护系统产学合作研究中心(IMS):五年更新提案
  • 批准号:
    0639182
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Planning Grant: Proposal for Intelligent Maintenance Systems Center Site
规划补助金:智能维护系统中心站点提案
  • 批准号:
    0531580
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Sensor-Based Adaptive Control and Prognosis of Complex Distributed Systems
职业:复杂分布式系统的基于传感器的自适应控制和预测
  • 批准号:
    0296191
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

Neural Process模型的多样化高保真技术研究
  • 批准号:
    62306326
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Safe Lyapunov-Based Deep Neural Network Adaptive Control of a Rehabilitative Upper Extremity Hybrid Exoskeleton
基于安全李亚普诺夫的深度神经网络自适应控制康复上肢混合外骨骼
  • 批准号:
    2230971
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Neural Network for Adaptive Expression of Social Behavior
用于社会行为自适应表达的神经网络
  • 批准号:
    22H02941
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Neural Network-Based Preconditioning of Adaptive Tabulation for Reactive Flow Applications
基于神经网络的反应流应用自适应表格预处理
  • 批准号:
    2154446
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Online-to-Batch Conversion of Adaptive Regret Bounds for Neural Network Generalization Error
神经网络泛化误差自适应遗憾界限的在线批量转换
  • 批准号:
    546438-2019
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Canadian Graduate Scholarships Foreign Study Supplements
Adaptive and Maladaptive Neural Network Responses to Inhibitory Challenges
自适应和适应不良神经网络对抑制性挑战的反应
  • 批准号:
    10318933
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Adaptive and Maladaptive Neural Network Responses to Inhibitory Challenges
自适应和适应不良神经网络对抑制性挑战的反应
  • 批准号:
    9903467
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Adaptive and Maladaptive Neural Network Responses to Inhibitory Challenges
自适应和适应不良神经网络对抑制性挑战的反应
  • 批准号:
    10542339
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Realization of next-generation adaptive radiation therapy using virtual CT image constructed with convolution neural network
利用卷积神经网络构建的虚拟CT图像实现下一代自适应放射治疗
  • 批准号:
    18K15563
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Smart Engines: Fuel Flexible Engine Control using Adaptive Neural Network Critics
智能发动机:使用自适应神经网络批评来实现灵活的发动机控制
  • 批准号:
    0901562
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Prediction of Stroke Outcome from Early MRI Data using an Adaptive Neural Network
使用自适应神经网络根据早期 MRI 数据预测中风结果
  • 批准号:
    7626823
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了