GOALI: Real Time, Nanoscale Imaging of Electrochemistry and Electroplating in Liquid Media

GOALI:液体介质中电化学和电镀的实时纳米级成像

基本信息

  • 批准号:
    1129722
  • 负责人:
  • 金额:
    $ 27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-10-01 至 2014-09-30
  • 项目状态:
    已结题

项目摘要

This Grant Opportunity for Academic Liaison with Industry (GOALI) project with the University of Pennsylvania and the IBM T. J. Watson Research Center will study fundamental aspects of electrochemical nucleation, growth, and dendrite formation as functions of substrate and process conditions with a novel imaging tool, the nanoaquarium, which facilitates imaging of electrodeposition in a liquid medium, in real time, with the nanoscale resolution of the transmission electron microscope (TEM). A hermetically-sealed, liquid cell (the nanoaquarium), with a height ranging from tens to hundreds of nanometers, sandwiched between electron-transparent, silicon-nitride windows will be constructed using microfabrication technology for real-time imaging of electrochemical processes with the TEM. The device will be equipped with electrodes for electrochemical plating/dissolution and sensing, and heaters for temperature control. The electrochemical process will be monitored in situ in real time with the electron microscope as a function of solution composition, additives, applied voltage/current, current ramping, electrode geometry, and temperature. The device will enable one to vary process conditions dynamically and monitor and modify parameters in real-time, yielding insights that are inaccessible by other means. The results of the study will assist both in developing basic electrochemical nucleation and growth models and in developing materials systems for various manufacturing processes. UPenn will design and construct the electrochemical nanoaquarium based on a previously successful liquid cell. Collaborative electrochemical experiments and data analysis will then be carried out at both IBM and UPenn. The materials studied will be chosen for their relevance to rechargeable battery technology, thin film photovoltaic cells, and advanced interconnects.Electrochemical processes play a critical role in a plethora of technologies, ranging from energy conversion in batteries, to the production of photovoltaic (PV) cells, to the fabrication of interconnects in high density microelectronics; yet a complete understanding of nucleation, growth, and development of morphology during electroplating is still lacking for many industrially important processes. Since its invention, the electron microscope, with its sub-nanometer resolution has enabled important discoveries in disciplines ranging from materials science to biology. The conventional electron microscope operates, however, in a high vacuum environment and is not capable of imaging processes in liquid media. To enable imaging of processes in liquid media such as electrodeposition and electrodisorption, it is necessary to construct a very thin, hermetically-sealed liquid cell (nanoaquarium) sandwiched between two electron-transparent membranes. Such a device will enable nanoscale observations and a better understanding of the initial, nanoscale stages of the electroplating process that ultimately control the process outcome. In addition to advancing fundamental science, this study will aid the optimization of manufacturing processes, help improve the performance and reliability of rechargeable batteries, and assist in the development of high throughput, low cost production of solar cells and higher density microelectronics. In addition, the nanoaquarium has broad applicability for in situ electron microscope imaging of diverse processes in liquid media such as nano particle self and controlled assembly, formation of metamaterials with unique properties, and biological phenomena. The nanoaquarium is likely to be transformative, provide new insights in diverse disciplines, and enable discoveries. The grant will also facilitate the translation of academic research to an industrial laboratory and enable academic researchers to get acquainted with critical problems encountered by manufacturers. The results of the study, in particular the videos obtained with the nanoaquarium, will be incorporated into instructional material in courses in materials science, electrochemistry, and nanotechnology. In situ electron microscopy videos obtained with the nanoaquarium convey information about dynamical, nanoscale phenomena that is vivid, accessible, and exciting to scientists and non-scientists alike. Narrated videos will be posted on the web for high school students and teachers, undergraduate students, and the public to convey the excitement of discovery and promote interest in science and engineering.
这个资助机会学术联络与产业(GOALI)项目与宾夕法尼亚大学和IBM T。J.沃森研究中心将研究电化学成核、生长和枝晶形成的基本方面,作为基底和工艺条件的函数,使用新型成像工具nanoaquarium,该工具有助于在液体介质中进行电沉积成像,具有真实的时间和透射电子显微镜(TEM)的纳米级分辨率。一个密封的液体电池(纳米水族馆),高度从几十到几百纳米不等,夹在电子透明的氮化硅窗口之间,将使用微制造技术构建,用于TEM的电化学过程的实时成像。该器械将配备用于电化学电镀/溶解和传感的电极以及用于温度控制的加热器。电化学过程将用电子显微镜以真实的时间作为溶液组成、添加剂、施加的电压/电流、电流斜坡、电极几何形状和温度的函数进行原位监测。该设备将使人们能够动态地改变工艺条件,并实时监测和修改参数,从而获得其他手段无法获得的见解。研究结果将有助于开发基本的电化学成核和生长模型,并为各种制造工艺开发材料系统。宾夕法尼亚大学将设计和建造电化学纳米水族馆的基础上,以前成功的液体电池。然后将在IBM和宾夕法尼亚大学进行合作电化学实验和数据分析。电化学过程在许多技术中起着至关重要的作用,从电池的能量转换,到光伏电池的生产,再到高密度微电子中的互连制造;然而,对于许多工业上重要的工艺,仍然缺乏对电镀期间形态的成核、生长和发展的完整理解。自发明以来,电子显微镜以其亚纳米分辨率使从材料科学到生物学等学科的重要发现成为可能。然而,传统的电子显微镜在高真空环境中操作,并且不能在液体介质中成像过程。为了能够成像的过程中的液体介质,如电沉积和电解吸,有必要构建一个非常薄的,密封的液体电池(纳米水族馆)夹在两个电子透明膜。这样的设备将能够进行纳米级观察并更好地了解电镀过程的初始纳米级阶段,从而最终控制工艺结果。 除了推进基础科学,这项研究将有助于优化制造工艺,帮助提高可充电电池的性能和可靠性,并有助于开发高产量,低成本的太阳能电池和更高密度的微电子产品。此外,nanoaquarium具有广泛的适用性,用于在液体介质中的各种过程的原位电子显微镜成像,如纳米颗粒自组装和受控组装,形成具有独特性能的超材料,以及生物现象。纳米水族馆很可能是变革性的,在不同的学科提供新的见解,并使发现。该赠款还将促进学术研究转化为工业实验室,并使学术研究人员能够了解制造商遇到的关键问题。这项研究的结果,特别是用纳米水族馆获得的视频,将被纳入材料科学,电化学和纳米技术课程的教学材料。 用nanoaquarium获得的原位电子显微镜视频传达了有关动态的纳米级现象的信息,这些信息对科学家和非科学家来说都是生动的,可访问的和令人兴奋的。将在网上为高中学生和教师、本科生和公众发布叙述视频,以传达发现的兴奋,并促进对科学和工程的兴趣。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Haim Bau其他文献

Haim Bau的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Haim Bau', 18)}}的其他基金

In-Situ, Real Time Transmission Electron Microscope Imaging of Colloidal Crystal Formation
胶体晶体形成的原位实时透射电子显微镜成像
  • 批准号:
    1066573
  • 财政年份:
    2011
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
The Use of Arrays of Sensors and Actuators to Control Convective Flows
使用传感器和执行器阵列来控制对流
  • 批准号:
    0212998
  • 财政年份:
    2002
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Active Control of Rayleigh-Benard Convection
瑞利-贝纳德对流的主动控制
  • 批准号:
    9632237
  • 财政年份:
    1996
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
REU Supplement: Mesoscale Heat Exchangers
REU 补充:中尺度换热器
  • 批准号:
    9012904
  • 财政年份:
    1990
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Presidential Young Investigator Award: Thermal Convection in a Porous Medium
总统青年研究员奖:多孔介质中的热对流
  • 批准号:
    8351658
  • 财政年份:
    1984
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Natural Convection in a Porous, Eccentric, Annular Gap and From a Pipe Buried in a Permeable Medium
多孔、偏心、环形间隙中的自然对流以及来自埋在渗透性介质中的管道的自然对流
  • 批准号:
    8217565
  • 财政年份:
    1983
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant

相似国自然基金

Immuno-Real Time PCR法精确定量血清MG7抗原及在早期胃癌预警中的价值
  • 批准号:
    30600737
  • 批准年份:
    2006
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
无色ReAl3(BO3)4(Re=Y,Lu)系列晶体紫外倍频性能与器件研究
  • 批准号:
    60608018
  • 批准年份:
    2006
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CPS: Medium: GOALI: Enabling Safe Innovation for Autonomy: Making Publish/Subscribe Really Real-Time
CPS:中:GOALI:实现自主安全创新:使发布/订阅真正实时
  • 批准号:
    2333120
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
CPS: Medium: GOALI: Enabling Scalable Real-Time Certification for AI-Oriented Safety-Critical Systems
CPS:中:GOALI:为面向 AI 的安全关键系统提供可扩展的实时认证
  • 批准号:
    2038855
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
CDS&E: GOALI: Paints/Coatings In-Silico Product Design and Real-Time Product-Quality Monitoring and Control
CDS
  • 批准号:
    1953176
  • 财政年份:
    2020
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
CPS: Medium: GOALI: Real-Time Computer Vision in Autonomous Vehicles: Real Fast Isn't Good Enough
CPS:中:GOALI:自动驾驶汽车中的实时计算机视觉:真正的快还不够好
  • 批准号:
    1837337
  • 财政年份:
    2019
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
GOALI: Stimulated Raman microscopy for sensitive real-time detection of membrane fouling
GOALI:受激拉曼显微镜用于灵敏地实时检测膜污染
  • 批准号:
    1826542
  • 财政年份:
    2018
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
GOALI: INFEWS N/P/H2O: Real-Time and Low-Cost Monitoring of Orthophosphate Ions Using Novel Graphene-Based Transistor Sensors
目标:INFEWS N/P/H2O:使用新型石墨烯晶体管传感器实时、低成本监测正磷酸盐离子
  • 批准号:
    1606057
  • 财政年份:
    2016
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
GOALI: Enabling Real-Time Detection and Identification of Friction Stir Welding Defects Through the Use of Physics-Based Process Dynamic Modeling
目标:通过使用基于物理的过程动态建模实现搅拌摩擦焊缺陷的实时检测和识别
  • 批准号:
    1332738
  • 财政年份:
    2013
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
GOALI: Real-Time Control of Production Systems for Energy-Efficient Manufacturing: Theory and Applications
GOALI:节能制造生产系统的实时控制:理论与应用
  • 批准号:
    1411516
  • 财政年份:
    2013
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
GOALI: Georeferenced Visualization and Emulated Proximity Monitoring for Real Time Knowledge-Based Excavator Control
GOALI:基于知识的挖掘机实时控制的地理参考可视化和模拟接近监控
  • 批准号:
    1160937
  • 财政年份:
    2012
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
GOALI: Fast Nonlinear Model Predictive Control for Dynamic Real-time Optimization
GOALI:用于动态实时优化的快速非线性模型预测控制
  • 批准号:
    1160014
  • 财政年份:
    2012
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了