In-Situ, Real Time Transmission Electron Microscope Imaging of Colloidal Crystal Formation

胶体晶体形成的原位实时透射电子显微镜成像

基本信息

  • 批准号:
    1066573
  • 负责人:
  • 金额:
    $ 32.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-04-01 至 2015-03-31
  • 项目状态:
    已结题

项目摘要

Award: 1066573PI: Bau Colloidal crystals with complex hierarchical architectures possess unique optical, electrical, thermal, and mechanical properties that differ from the properties of their individual building blocks. These metamaterials are playing an increasingly important role in various emerging technologies ranging from energy conversion (photovoltaic cells) to microelectronics to medicine to defense (stealth technology). While a large library of nanocrystals with various properties and functionalizations is available, understanding colloidal crystal formation and process kinetics remains a challenge. Tools that are currently available to the experimenter include light scattering, which provides information on ensemble averages, and transmission electron microscopy of ?frozen? samples taken at discrete times during the assembly process (typically at the end of the process), which do not reveal process dynamics. To enable the development of new processes and new materials, it is highly desirable to observe the self and controlled assembly of nanocrystals in real time as a function of various process conditions.Intellectual Merit: This project studies colloidal crystal formation with a novel imaging tool dubbed the nanoaquarium. The device consists of a thin reactor, ranging in height from tens to hundreds of nanometers, sandwiched between two thin (electron-transparent) silicon nitride membranes. The nanoaquarium will accommodate multistreams of liquids and suspensions, will retain the liquids for hours in the high vacuum environment of the electron microscope without any leaks, and will allow the tracking of individual particles, their rotation, and interactions in real time. Although preliminary experiments demonstrating the utility of the nanoaquarium for studying the aggregation of monodisperse particles have successfully been completed, it is desirable to improve the device to allow the mixing of multiple liquid streams and equip the device with embedded resistors for temperature measurement and control and with electrodes for the induction of electric fields for actuation and sensing. In close collaboration with chemists and material scientists, the device will be used to study the formation of binary and ternary superlattices. Such superlattices are predicted to have properties that significantly differ from those of the individual components and that may be optimal for photovoltaic cells and microelectronics. The nanoaquarium provides a ?programmable? environment to study colloidal self and controlled assembly in real time as a function of particles? geometries, functionalization, and concentrations; solvent composition, pH, and temperature; and electric fields. Despite their potential importance, little is known about these crystals? nucleation and growth processes.Broader Impact: The nanoaquarium has broad applicability for in-situ electron microscope imaging of processes in liquid media such as nano particle self and controlled assembly, study of nanoparticle toxicology (migration of particles on membranes), electrochemical material deposition, contact line motion, nucleation processes, and biological processes. Since the device facilitates new experiments, it is likely to provide new insights and enable discoveries in a variety of disciplines. Additionally, the nanoaquarium has potential for commercialization. Many researchers have expressed an interest in using the device in their studies. The results of the proposed study and the videos obtained with the nanoaquarium will be incorporated into instructional material in courses on materials science, colloidal science, interfacial phenomena, and nanotechnology offered to engineering, physics, and chemistry majors. In-situ electron microscopy video footage obtained with the nanoaquarium conveys information about dynamical nanoscale phenomena that is vivid, accessible, and exciting to scientists and non-scientists alike. Narrated videos will be posted on the web, prepared for high school students and teachers, undergraduate students, and the public to convey the excitement of discovery and promote interest in science and engineering. The project will engage undergraduate researchers and high school teachers in device development, imaging, and image analysis.
奖:1066573PI:具有复杂分层结构的BAU胶体晶体具有独特的光学、电学、热和机械性能,这些性能与其各自构建块的属性不同。这些超材料在各种新兴技术中发挥着越来越重要的作用,从能源转换(光伏电池)到微电子技术,从医学到国防(隐形技术)。尽管有大量具有不同性质和官能化的纳米晶库可用,但理解胶体晶体的形成和过程动力学仍然是一个挑战。实验者目前可用的工具包括光散射,它提供了关于总体平均的信息,以及?冷冻?的透射电子显微镜。在组装过程中的离散时间(通常在过程结束时)采集的样本,不能揭示过程动态。为了使新工艺和新材料的开发成为可能,随着各种工艺条件的变化,实时观察纳米晶体的自我和可控组装是非常必要的。智力优势:该项目使用一种名为纳米水族馆的新型成像工具来研究胶体晶体的形成。该装置由一个高度从几十纳米到数百纳米的薄反应器组成,夹在两层薄的(电子透明的)氮化硅薄膜之间。纳米水族馆将容纳多种液体和悬浮液,将液体保留在电子显微镜的高真空环境中数小时,没有任何泄漏,并将允许实时跟踪单个粒子、它们的旋转和相互作用。虽然已经成功地完成了证明纳米水族箱用于研究单分散颗粒聚集的初步实验,但仍需改进该装置以允许多种液体的混合,并为该装置配备用于温度测量和控制的嵌入式电阻以及用于感应电场以用于激励和传感的电极。在与化学家和材料科学家的密切合作下,该设备将用于研究二元和三元超晶格的形成。据预测,这种超晶格具有与单个元件显著不同的特性,这可能是光伏电池和微电子学的最佳选择。纳米水族馆提供了一个可编程的?实时研究胶体自身和受控组装的环境作为粒子的函数?几何构型、官能化和浓度;溶剂组成、pH和温度;以及电场。尽管它们具有潜在的重要性,但人们对这些晶体知之甚少?广泛的影响:纳米水族馆广泛适用于液体介质中过程的原位电子显微镜成像,如纳米颗粒自组装和受控组装、纳米颗粒毒理学研究(颗粒在膜上的迁移)、电化学材料沉积、接触线运动、成核过程和生物过程。由于该设备促进了新的实验,它很可能提供新的见解,并使各种学科的发现成为可能。此外,纳米水族馆具有商业化的潜力。许多研究人员都表示有兴趣在他们的研究中使用该设备。拟议的研究结果和利用纳米水族馆获得的视频将被纳入工程、物理和化学专业开设的材料科学、胶体科学、界面现象和纳米技术课程的教学材料中。利用纳米水族馆获得的原位电子显微镜视频片段传达了关于动态纳米级现象的信息,这是生动的、可接触的,对科学家和非科学家都是令人兴奋的。解说视频将被发布在网络上,为高中生和教师、本科生和公众准备,以传达发现的兴奋,并促进对科学和工程的兴趣。该项目将邀请本科生研究人员和高中教师参与设备开发、成像和图像分析。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Haim Bau其他文献

Haim Bau的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Haim Bau', 18)}}的其他基金

GOALI: Real Time, Nanoscale Imaging of Electrochemistry and Electroplating in Liquid Media
GOALI:液体介质中电化学和电镀的实时纳米级成像
  • 批准号:
    1129722
  • 财政年份:
    2011
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Continuing Grant
The Use of Arrays of Sensors and Actuators to Control Convective Flows
使用传感器和执行器阵列来控制对流
  • 批准号:
    0212998
  • 财政年份:
    2002
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
Active Control of Rayleigh-Benard Convection
瑞利-贝纳德对流的主动控制
  • 批准号:
    9632237
  • 财政年份:
    1996
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
REU Supplement: Mesoscale Heat Exchangers
REU 补充:中尺度换热器
  • 批准号:
    9012904
  • 财政年份:
    1990
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Continuing Grant
Presidential Young Investigator Award: Thermal Convection in a Porous Medium
总统青年研究员奖:多孔介质中的热对流
  • 批准号:
    8351658
  • 财政年份:
    1984
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Continuing Grant
Natural Convection in a Porous, Eccentric, Annular Gap and From a Pipe Buried in a Permeable Medium
多孔、偏心、环形间隙中的自然对流以及来自埋在渗透性介质中的管道的自然对流
  • 批准号:
    8217565
  • 财政年份:
    1983
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Immuno-Real Time PCR法精确定量血清MG7抗原及在早期胃癌预警中的价值
  • 批准号:
    30600737
  • 批准年份:
    2006
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
无色ReAl3(BO3)4(Re=Y,Lu)系列晶体紫外倍频性能与器件研究
  • 批准号:
    60608018
  • 批准年份:
    2006
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

NSF Convergence Accelerator Track L: Innovative chemical microsensor development for in situ, real-time monitoring of priority water pollutants to protect water quality
NSF Convergence Accelerator Track L:创新化学微传感器开发,用于对重点水污染物进行原位实时监测,以保护水质
  • 批准号:
    2344373
  • 财政年份:
    2024
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
In situ and real-time readout of nuclear mechanotransduction via single cell mechanics and site-specific fluorescence reporting
通过单细胞力学和位点特异性荧光报告原位实时读出核力转导
  • 批准号:
    10745440
  • 财政年份:
    2023
  • 资助金额:
    $ 32.5万
  • 项目类别:
A Novel Hybrid-Mode Curved-shape SAW (CsSAW) Sensor For The In-Situ/Real-Time Torque And Temperature Measurement of Rotor Shaft in Harsh Environments
一种新型混合模式曲面声表面波 (CsSAW) 传感器,用于恶劣环境下转子轴的原位/实时扭矩和温度测量
  • 批准号:
    2224313
  • 财政年份:
    2022
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
Towards In-Situ Qualification of Additively Manufactured Parts: Real Time Monitoring and Intelligent Intermittent Control of Laser Powder-Bed Fusion Additive Manufacturing
迈向增材制造零件的现场鉴定:激光粉末床熔融增材制造的实时监控和智能间歇控制
  • 批准号:
    RGPIN-2020-06306
  • 财政年份:
    2022
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Discovery Grants Program - Individual
Real-Time Quantitation of Transport Across Vascular-Tissue Interfaces in Organ-On-Chip Models Using In Situ Mass Spectrometry
使用原位质谱法实时定量器官芯片模型中跨血管组织界面的运输
  • 批准号:
    10394501
  • 财政年份:
    2022
  • 资助金额:
    $ 32.5万
  • 项目类别:
Probing conformational dynamics of HIV-1 Env in real time and in situ during virus entry
在病毒进入过程中实时原位探测 HIV-1 Env 的构象动力学
  • 批准号:
    10660408
  • 财政年份:
    2022
  • 资助金额:
    $ 32.5万
  • 项目类别:
Microsystems based stable, reliable, and real-time sensor array for in-situ thermal monitoring of lithium-ion batteries
基于微系统的稳定、可靠、实时的传感器阵列,用于锂离子电池的原位热监测
  • 批准号:
    571845-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Alliance Grants
Realization of a Technology for In-situ Real Time Measurements of Solids Content in Settling Tailings
沉降尾矿固体含量原位实时测量技术的实现
  • 批准号:
    566331-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Alliance Grants
In-situ real-time Helium monitoring against abrupt volcanism
针对突发火山活动的现场实时氦气监测
  • 批准号:
    21K04602
  • 财政年份:
    2021
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Realization of a Technology for In-situ Real Time Measurements of Solids Content in Settling Tailings
沉降尾矿固体含量原位实时测量技术的实现
  • 批准号:
    566331-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了