CDS&E: GOALI: Paints/Coatings In-Silico Product Design and Real-Time Product-Quality Monitoring and Control
CDS
基本信息
- 批准号:1953176
- 负责人:
- 金额:$ 30.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modern paint/coating (P/C) products are complex mixtures of chemicals that include polymer resins, pigment dispersants, and other additives. To describe P/C qualities such as color strength, durability, and shelf life, a vast set of consumer specifications are required. The dependence of these consumer attributes on the properties and amounts of the P/C ingredients and the preparation conditions is complex, poorly understood, and currently impossible to predict using physically based mathematical models. This is in contrast to the P/C ingredients themselves, however, whose properties generally are well-understood and can be predicted in advance by rigorous chemical reaction and mixing models. This project is expected to develop a model capable of predicting final properties of these complex mixtures. This is expected to aid in product design, and real-time quality prediction, defect detection and diagnosis, and product quality monitoring and control. The expected economic impact of this work is faster design and customization of paint/coating (P/C) products. This research program aims to overcome the challenges of predicting P/C final product qualities using a hybrid simulation approach that combines machine learning methods with physically-based modeling elements. At its core, decades of manufacturing data from the industrial partner of this collaboration will be used to uncover relationships between manufacturing processing conditions and the poorly understood P/C product qualities using a statistical machine learning technique. This will create a black-box model in the form of an artificial neural network which will take as input the predictions of the physically based ingredient modeling elements and will predict final P/C qualities. This research will produce robust computational methods for in-silico P/C product design, real-time P/C product quality prediction, product defect detection and diagnosis, and will enable methods to monitor and control P/C product quality. The computational methods can be applied directly or extended to other manufacturing processes. The team plans to integrate this research systematically into undergraduate education through the Drexel Co-op Program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代油漆/涂料(P/C)产品是复杂的化学品混合物,包括聚合物树脂,颜料分散剂和其他添加剂。为了描述P/C质量,如颜色强度,耐用性和保质期,需要大量的消费者规格。这些消费者属性对P/C成分的性质和量以及制备条件的依赖性是复杂的,知之甚少,并且目前不可能使用基于物理的数学模型来预测。然而,这与P/C成分本身相反,P/C成分的性质通常是很好理解的,并且可以通过严格的化学反应和混合模型提前预测。预计该项目将开发一种能够预测这些复杂混合物最终性质的模型。这将有助于产品设计,实时质量预测,缺陷检测和诊断,以及产品质量监测和控制。这项工作的预期经济影响是加快油漆/涂料(P/C)产品的设计和定制。 该研究计划旨在克服使用混合仿真方法预测P/C最终产品质量的挑战,该方法将机器学习方法与基于物理的建模元素相结合。其核心是,来自此次合作的工业合作伙伴的数十年制造数据将用于使用统计机器学习技术揭示制造工艺条件与人们知之甚少的P/C产品质量之间的关系。这将创建人工神经网络形式的黑盒模型,其将基于物理的成分建模元件的预测作为输入,并将预测最终的P/C质量。这项研究将产生强大的计算方法,在硅片P/C产品设计,实时P/C产品质量预测,产品缺陷检测和诊断,并将使方法来监测和控制P/C产品质量。计算方法可以直接应用或扩展到其他制造过程。该团队计划通过Drexel Co-op Program将这项研究系统地整合到本科教育中。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Data‐driven prediction and optimization of liquid wettability of an initiated chemical vapor deposition‐produced fluoropolymer
数据驱动的化学气相沉积生产的含氟聚合物的液体润湿性预测和优化
- DOI:10.1002/aic.17674
- 发表时间:2022
- 期刊:
- 影响因子:3.7
- 作者:Schwartz, Daniel;Nguyen, Tien;Chen, Zhengtao;Lau, Kenneth K.;Grady, Michael C.;Shokoufandeh, Ali;Soroush, Masoud
- 通讯作者:Soroush, Masoud
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Masoud Soroush其他文献
Mathematical Modeling and Optimization of a Semi-Batch Polymerization Reactor
- DOI:
10.1016/s1474-6670(17)38668-8 - 发表时间:
2000-06-01 - 期刊:
- 影响因子:
- 作者:
Dwayne Tyner;Masoud Soroush;Michael C. Grady;John Richards;John P. Congalidis - 通讯作者:
John P. Congalidis
Explicit action of <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll" class="math"><msub><mi>E</mi><mrow><mn>7</mn><mo stretchy="false">(</mo><mn>7</mn><mo stretchy="false">)</mo></mrow></msub></math> on <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll" class="math"><mi>N</mi><mo>=</mo><mn>8</mn></math> supergravity fields
- DOI:
10.1016/j.nuclphysb.2008.04.006 - 发表时间:
2008-09-21 - 期刊:
- 影响因子:
- 作者:
Renata Kallosh;Masoud Soroush - 通讯作者:
Masoud Soroush
Control System Selection: A Measure of Control Quality Loss in Analytical Control
- DOI:
10.1016/s1474-6670(17)31926-2 - 发表时间:
2004-07-01 - 期刊:
- 影响因子:
- 作者:
Masoud Soroush;Yiannis Dimitratos - 通讯作者:
Yiannis Dimitratos
Adaptive fault-tolerant observer-based control for multi-input multi-output interconnected systems with bandwidth-limited communication
具有带宽受限通信的多输入多输出互联系统的自适应容错观测器控制
- DOI:
10.1016/j.conengprac.2024.106217 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:4.600
- 作者:
Aref Ghoreishee;Masoud Soroush - 通讯作者:
Masoud Soroush
Nonlinear Observer Design with Application to Chemical Reactors
- DOI:
10.1016/s1474-6670(17)47074-1 - 发表时间:
1995-06-01 - 期刊:
- 影响因子:
- 作者:
Masoud Soroush - 通讯作者:
Masoud Soroush
Masoud Soroush的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Masoud Soroush', 18)}}的其他基金
Participant Support for Students to Attend the International Conference and Workshop on Mxenes; Philadelphia, Pennsylvania; 5-7 August 2024
为学生参加 Mxenes 国际会议和研讨会提供支持;
- 批准号:
2416797 - 财政年份:2024
- 资助金额:
$ 30.24万 - 项目类别:
Standard Grant
Student Support to Attend the International Workshop on MXenes; Philadelphia, Pennsylvania; 1-3 August 2022
支持学生参加 MXenes 国际研讨会;
- 批准号:
2228018 - 财政年份:2022
- 资助金额:
$ 30.24万 - 项目类别:
Standard Grant
FMRG: Cyber: A Cyber Nanomanufacturing Platform for Large-scale Production of High-quality MXenes and Other Two-dimensional Nanomaterials
FMRG:Cyber:用于大规模生产高质量 MXene 和其他二维纳米材料的网络纳米制造平台
- 批准号:
2134607 - 财政年份:2021
- 资助金额:
$ 30.24万 - 项目类别:
Standard Grant
REU Site: Smart Manufacturing Research Experiences for Undergraduates (SMREU)
REU 网站:本科生智能制造研究体验 (SMREU)
- 批准号:
1949718 - 财政年份:2020
- 资助金额:
$ 30.24万 - 项目类别:
Standard Grant
GOALI: Collaborative Research: On-Demand Continuous-Flow Production of High Performance Acrylic Resins: from Electronic-Level Modeling to Modular Process Intensification
GOALI:合作研究:高性能丙烯酸树脂的按需连续流生产:从电子级建模到模块化过程强化
- 批准号:
1804285 - 财政年份:2018
- 资助金额:
$ 30.24万 - 项目类别:
Standard Grant
GOALI: Collaborative Research: Model-Predictive Safety Systems for Predictive Detection of Operation Hazards
GOALI:协作研究:用于预测检测操作危险的模型预测安全系统
- 批准号:
1704915 - 财政年份:2017
- 资助金额:
$ 30.24万 - 项目类别:
Standard Grant
Collaborative Research: Optimal Design and Operation of Dye Sensitized Solar Cells Using an Integrated Strategy Involving First-Principles Modeling, Synthesis, and Characterization
合作研究:采用涉及第一性原理建模、合成和表征的综合策略优化染料敏化太阳能电池的设计和运行
- 批准号:
1236180 - 财政年份:2012
- 资助金额:
$ 30.24万 - 项目类别:
Standard Grant
Collaborative Project: GOALI: Acrylic Resins Product and Process Design through Combined Use of Quantum Chemical Calculations and Spectroscopic Methods
合作项目:GOALI:结合使用量子化学计算和光谱方法进行丙烯酸树脂产品和工艺设计
- 批准号:
1160169 - 财政年份:2012
- 资助金额:
$ 30.24万 - 项目类别:
Continuing Grant
Collaborative Research: GOALI: Synergistic Improvement of Process Safety and Product Quality Using Process Databases
合作研究:GOALI:使用过程数据库协同改进过程安全和产品质量
- 批准号:
1066461 - 财政年份:2011
- 资助金额:
$ 30.24万 - 项目类别:
Continuing Grant
Collaborative Research: GOALI: Design of Chemically Self-Regulated, Acrylic Coatings Processes through Iterative Use of Chemical Quantum Calculations and Spectroscopic Methods
合作研究:GOALI:通过迭代使用化学量子计算和光谱方法设计化学自调节丙烯酸涂料工艺
- 批准号:
0932882 - 财政年份:2009
- 资助金额:
$ 30.24万 - 项目类别:
Continuing Grant
相似海外基金
GOALI: Understanding granulation using microbial resource management for the broader application of granular technology
目标:利用微生物资源管理了解颗粒化,以实现颗粒技术的更广泛应用
- 批准号:
2227366 - 财政年份:2024
- 资助金额:
$ 30.24万 - 项目类别:
Standard Grant
GOALI: Development of Next Generation MXene-based Li-S Batteries with Practical Operating Temperatures
GOALI:开发具有实用工作温度的下一代 MXene 基锂硫电池
- 批准号:
2427203 - 财政年份:2024
- 资助金额:
$ 30.24万 - 项目类别:
Standard Grant
GOALI: Understanding Tribological Properties of Thermally-Synthesized Carbon
目标:了解热合成碳的摩擦学特性
- 批准号:
2315343 - 财政年份:2024
- 资助金额:
$ 30.24万 - 项目类别:
Standard Grant
GOALI: Understanding the Physical Mechanisms of Distortion and Controlling its Effects in Sintering-based Additive Manufacturing Processes
目标:了解变形的物理机制并控制其在基于烧结的增材制造工艺中的影响
- 批准号:
2328678 - 财政年份:2024
- 资助金额:
$ 30.24万 - 项目类别:
Standard Grant
GOALI: Integrated Design and Operability Optimization of Industrial-Scale Modular Intensified Systems
GOALI:工业规模模块化强化系统的集成设计和可操作性优化
- 批准号:
2401564 - 财政年份:2024
- 资助金额:
$ 30.24万 - 项目类别:
Standard Grant
CPS: Medium: GOALI: Enabling Safe Innovation for Autonomy: Making Publish/Subscribe Really Real-Time
CPS:中:GOALI:实现自主安全创新:使发布/订阅真正实时
- 批准号:
2333120 - 财政年份:2024
- 资助金额:
$ 30.24万 - 项目类别:
Standard Grant
GOALI: Fundamental Investigation of Constrained Cutting for High Performance Machining of Difficult-to-Cut Materials
GOALI:难切削材料高性能加工约束切削的基础研究
- 批准号:
2323120 - 财政年份:2024
- 资助金额:
$ 30.24万 - 项目类别:
Standard Grant
GOALI: A System Theoretical Framework for Modeling, Analysis and Closed-loop Management of Supply Chains of Perishable Products
GOALI:易腐产品供应链建模、分析和闭环管理的系统理论框架
- 批准号:
2232412 - 财政年份:2023
- 资助金额:
$ 30.24万 - 项目类别:
Standard Grant
GOALI: Frameworks: At-Scale Heterogeneous Data based Adaptive Development Platform for Machine-Learning Models for Material and Chemical Discovery
GOALI:框架:基于大规模异构数据的自适应开发平台,用于材料和化学发现的机器学习模型
- 批准号:
2311632 - 财政年份:2023
- 资助金额:
$ 30.24万 - 项目类别:
Standard Grant
LEAP-HI: GOALI: Accelerating Design for Additive Manufacturing of Smart Multimaterial Devices
LEAP-HI:GOALI:加速智能多材料设备增材制造的设计
- 批准号:
2401218 - 财政年份:2023
- 资助金额:
$ 30.24万 - 项目类别:
Continuing Grant