CAREER:Sensors for Quantification of Degradation in Polymer Electrolyte Fuel Cells
职业:用于量化聚合物电解质燃料电池降解的传感器
基本信息
- 批准号:1132508
- 负责人:
- 金额:$ 20.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-01 至 2012-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTPI: Matthew Mench Institution: Pennsylvania State UniversityProposal Number: 0644811Title: CAREER: Sensors for Quantification of Degradation in Polymer Electrolyte Fuel CellsIntellectual meritMany complex systems suffer gradual degradation that can result in catastrophic failure. Because the time scale of degradation is relatively slow, these types of anomalous faults are nearly impossible to detect at an early stage with conventional sensing technology. The PI is planning an approach that is to enable early detection and quantification of potentially catastrophic evolving faults in polymer electrolyte fuel cells (PEFCs). The objective is early detection that will precede implementation of anomaly mitigation and graceful degradation strategies, extending service availability, mean performance, and enabling a more aggressive initial design. This objective is essential to achieve the extended longevity that currently limits PEFCs. The methodology to achieve this sensing capability is heuristically similar to an electrocardiogram, in which the time series data of a heart's response to external stress are used to rapidly diagnose ailments that have evolved over many years.This sensing and quantification methodology provides early stage diagnosis of relatively slowly varying anomalies through a fast time scale stimulus-response approach. Following a chosen externally applied stimulus, the time series data are partitioned into a response vector using symbolic dynamics. The dynamic response vector characteristics are compared to a nominal response vector to precisely quantify the anomaly level. This early fault detection technique will enable nearly imperceptible slow time scale anomalies to be quantified online in a fast time scale, well before significant degradation occurs.Broader Impact:The broader impact of this research should help generate the infrastructure and knowledge base needed to enable ubiquitous PEFC implementation, and reduce long term United States dependence of fossil fuels. The CO sensor will be developed into a prototype under a collaboration between Nuvera and TA&D, a technology development company, maximizing impact. Educationally, the program will expose hundreds of students, from high school through graduate school, to fuel cell technology. Three Ph.D. students will be directly involved, and forty undergraduates per year will be enrolled in an upgraded senior level course including industrial speakers and a collaboration with the University of Arizona. A textbook currently in development will also benefit from the output of this research. High school students and teachers will participate in an summer program, and a new graduate-level course will be developed. Overall, the integrated research and educational program will help establish a permanent infrastructure to address key technical challenges that presently hinder widespread PEFC adoption.
摘要:Matthew Mench机构:宾夕法尼亚州立大学提案编号:0644811标题:职业:聚合物电解质燃料电池降解定量传感器智力价值许多复杂的系统遭受逐渐退化,可能导致灾难性的故障。 由于退化的时间尺度相对较慢,因此这些类型的异常故障几乎不可能在早期阶段用常规感测技术检测到。 PI正在计划一种方法,以便能够早期检测和量化聚合物电解质燃料电池(PEFC)中潜在的灾难性演变故障。目标是在实施异常缓解和适度降级策略之前进行早期检测,从而扩展服务可用性、平均性能并实现更积极的初始设计。 这一目标对于实现目前限制PEFC的延长寿命至关重要。实现这种感测能力的方法学上类似于心电图,其中心脏对外部应力的响应的时间序列数据用于快速诊断已经演变多年的疾病。这种感测和量化方法通过快速时间尺度刺激响应方法提供相对缓慢变化的异常的早期诊断。 在选定的外部施加的刺激,时间序列数据被划分成一个响应向量,使用符号动力学。 将动态响应向量特性与标称响应向量进行比较以精确地量化异常水平。 这种早期的故障检测技术将使几乎察觉不到的慢时间尺度的异常被量化在线快速的时间尺度,以及之前发生重大degradations.Broader影响:更广泛的影响,这项研究应有助于产生的基础设施和知识基础需要使无处不在的PEFC的实施,并减少美国长期依赖化石燃料。 CO传感器将在Nuvera和技术开发公司TA D的合作下开发成原型,以最大限度地发挥影响。在教育方面,该计划将使数百名学生,从高中到研究生院,燃料电池技术。 三个博士学生将直接参与,每年将有40名本科生参加升级的高级课程,其中包括工业演讲者以及与亚利桑那大学的合作。 目前正在编写的教科书也将受益于这项研究的成果。 高中学生和教师将参加一个暑期项目,并将开发一个新的研究生课程。总体而言,综合研究和教育计划将有助于建立一个永久性的基础设施,以解决目前阻碍广泛采用PEFC的关键技术挑战。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Mench其他文献
STRATEGIC VISION
战略愿景
- DOI:
10.1108/978-1-78560-467-620151001 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Suzie Allard;Kari Alldredge;Suresh Babu;Mike Berry;Brad Collett;Julian Cosner;•. S. Forrest;Michael Higdon;•. S. Hillyer;Lorna Hollowell;Rachel McCord;S. Spurgeon;Matthew Scoggins;Visioning Committee;Karmen Jones;Janeen Lalik;Kimberly Hardaway;Cavanaugh Mims;Gretchen Neisler;Phyllis Nichols;Amber Roessner;Jada Russell;Paula Schaefer;Steve Smith;Jill Zambito;Shelby Brawner;Renee D'Elia;Joe Hoagland;Kim McCullock;Ellen McIntyre;Neil Patel;Carla Phillips;Mintha Roach;Joe Scogin;Elizabeth Strand;Amber Williams;Ashley Blamey;Allie Cohn;Robert DuBois;Marc Gibson;Nicole McFarlane;Regis Nisengwe;Mike Odom;Sharon Pryse;Jacob Rudolph;N. Schrick;Duane Wiles;Michelle Buchanan;Matt Deveraux;Mike Galbreath;Paul Hauptman;Sarah Hillyer;Sadie Hutson;Glenn Jacobs;Matthew Mench;Art Ragauskas;Javiette Samuel;Marcy Souza RanaAbudayyah;Tom Berg;Randy Bradley;Jim Coder;Jackie Johnson;Charles Lomax;Lori Messinger;Althea Murphy;Phil Myer;Beth Schussler;D. Thompson;Brandon Winford;Mark Power Robison;Michael A. Diamond - 通讯作者:
Michael A. Diamond
Matthew Mench的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Mench', 18)}}的其他基金
CAREER:Sensors for Quantification of Degradation in Polymer Electrolyte Fuel Cells
职业:用于量化聚合物电解质燃料电池降解的传感器
- 批准号:
0644811 - 财政年份:2007
- 资助金额:
$ 20.47万 - 项目类别:
Standard Grant
相似海外基金
COMPAS: co integration of microelectronics and photonics for air and water sensors
COMPAS:微电子学和光子学的共同集成,用于空气和水传感器
- 批准号:
10108154 - 财政年份:2024
- 资助金额:
$ 20.47万 - 项目类别:
EU-Funded
Flexible fMRI-Compatible Neural Probes with Organic Semiconductor based Multi-modal Sensors for Closed Loop Neuromodulation
灵活的 fMRI 兼容神经探针,带有基于有机半导体的多模态传感器,用于闭环神经调节
- 批准号:
2336525 - 财政年份:2024
- 资助金额:
$ 20.47万 - 项目类别:
Standard Grant
CAREER: Secure Miniaturized Bio-Electronic Sensors for Real-Time In-Body Monitoring
职业:用于实时体内监测的安全微型生物电子传感器
- 批准号:
2338792 - 财政年份:2024
- 资助金额:
$ 20.47万 - 项目类别:
Continuing Grant
Plume Structure and Mantle Layering Beneath the South Pacific: Modeling Teleseismic Waveforms from Traditional and Floating Sensors
南太平洋下方的羽流结构和地幔分层:利用传统和浮动传感器模拟远震波形
- 批准号:
2341811 - 财政年份:2024
- 资助金额:
$ 20.47万 - 项目类别:
Continuing Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
- 批准号:
2344256 - 财政年份:2024
- 资助金额:
$ 20.47万 - 项目类别:
Standard Grant
CAREER: Designing Autonomous Battery-Free Robotic Sensors
职业:设计自主无电池机器人传感器
- 批准号:
2338736 - 财政年份:2024
- 资助金额:
$ 20.47万 - 项目类别:
Continuing Grant
Collaborative Research: Large-Scale Wireless RF Networks of Microchip Sensors
合作研究:微芯片传感器的大规模无线射频网络
- 批准号:
2322601 - 财政年份:2024
- 资助金额:
$ 20.47万 - 项目类别:
Standard Grant
SUPer-REsolution non-invasive Muscle measurements with miniaturised magnetIc SEnsors (SUPREMISE)
使用微型磁性传感器 (SUPREMISE) 进行超分辨率非侵入性肌肉测量
- 批准号:
EP/X031950/1 - 财政年份:2024
- 资助金额:
$ 20.47万 - 项目类别:
Fellowship
Terahertz-frequency sensors for atmospheric chemistry and space research (renewal)
用于大气化学和空间研究的太赫兹频率传感器(更新)
- 批准号:
MR/Y011775/1 - 财政年份:2024
- 资助金额:
$ 20.47万 - 项目类别:
Fellowship
Sensoron: Fusing Memory and Computing into Spintronics-based Sensors
Sensoron:将内存和计算融合到基于自旋电子学的传感器中
- 批准号:
23K22808 - 财政年份:2024
- 资助金额:
$ 20.47万 - 项目类别:
Grant-in-Aid for Scientific Research (B)