COLLABORATIVE RESEARCH: Nano-Engineered MOF-Graphene Materials: New Perspectives for Reactive Adsorption and Catalysis
合作研究:纳米工程MOF-石墨烯材料:反应吸附和催化的新视角
基本信息
- 批准号:1133066
- 负责人:
- 金额:$ 21.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-10-01 至 2016-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1133112/1133066Bandosz/GibbinsActivated carbons possess high surface area (typically 1,000-2,000 m2g-1) and are powerful physical adsorbents, but have little catalytic activity except at high temperatures. Metal-organic framework (MOF) materials are generally effective catalysts, but are less effective as adsorbents. Recently, in a proof of concept, we have succeeded in synthesizing a GO/MOF nanocomposite material, and shown that it is very effective in removing toxic gases (ammonia, hydrogen sulfide) from gas streams through a combination of surface reaction and adsorption. The capacity of the nanocomposites to remove toxic gases significantly exceeds that of either the MOF or graphite oxide alone, and preliminary results for ammonia suggest that these nanocomposites can achieve a 300% or more increase in adsorption capacity over conventional activated carbons. This project will be a joint experimental-theoretical study of such graphene/MOF and GO/MOF (collectively, G/MOF) nanocomposites, with the aim of determining their formation mechanism, atomic structure, pore structure and catalytic and adsorption properties, with the practical goal of designing materials with optimal adsorption and catalytic properties for the removal of toxic gases. As grapheme-based components graphite, graphite oxide and exfoliated graphite will be used. Syntheses will be followed by characterization. The interactions of NH3 and H2S, separately and mixed with methane, with the nanocomposites will then be investigated. These systems are chosen based on the properties and differences in the chemical nature of the adsorbates, the need for reactive adsorption under ambient conditions, and the potential detection capabilities of graphene-based nanocomposites. For the latter the changes in electrical conductivity can be employed. MOFs chosen for the study will include water stable materials with potentially active Cu, Cr and Fe sites, such as Cu-BT or MIL-100. In parallel with the experimental program, dual scale theoretical studies using molecular simulation (Monte Carlo, Hybrid Reverse Monte Carlo and Molecular Dynamics) and (ab initio) density functional theory will be carried out to determine details of the atomic structure of the materials, the reaction mechanism, reactive adsorption capacity and heats of adsorption. These theoretical results will help direct the experimental program towards promising materials and conditions. This research project will provide fundamental understanding of the relation between synthesis conditions, atomic structure and pore morphology, and separations performance for a new class of G/MOF nanocomposites that are designed for toxic gas removal. These novel materials may find application in other separations and in sensing devices. The broad spectrum of surface characterization and theoretical methods applied will lead to a better understanding of the surface chemistry of adsorbents and catalysts in general. The research is directly relevant to developing new strategies to design effective materials for removal of toxic gases from air at ambient conditions through reactive adsorption. Another important technical aspect is the possibility of applications of these materials as gas sensors. If small molecule gases are intercalated within the graphite interlayer space the electrical conductivity is expected to change, and this phenomenon can be used to detect toxic gases at low concentration range. A preliminary exploratory study of ammonia on a GO/MOF nanocomposite showed an approximately threefold increase in adsorption capacity over conventional activated carbons. Thus, the proposed research is potentially transformative. The project will involve two graduate students, two undergraduate researchers and one high school student from an inner city science-oriented high school. CCNY is a minority serving institution, and the project would provide the possibility for a member of an under-represented group to perform research and to earn the Ph.D. NCSU?s AGEP/Opt-Ed and ORNL?s Research Alliance in Math and Science (RAMS) summer program will also provide opportunities to recruit students from under-represented populations. The whole education experience of the students will be based on the integration of research and education.
1133112/1133066BANDOSZ/GIBBINS活化的碳具有较高的表面积(通常为1,000-2,000 m2g-1),并且具有强大的物理吸附剂,但除高温外,几乎没有催化活性。金属有机框架(MOF)材料通常是有效的催化剂,但作为吸附剂的有效性较差。最近,在概念证明中,我们成功地合成了GO/MOF纳米复合材料,并表明它通过表面反应和吸附的结合从气流中从气流中去除有毒气体(氨,硫化氢)非常有效。纳米复合材料去除有毒气体的能力显着超过了单独的MOF或石墨氧化物的能力,并且氨的初步结果表明,这些纳米复合材料可以在常规活化碳中获得300%或更高的吸附能力。该项目将是对这种石墨烯/MOF和GO/MOF(统称为G/MOF)纳米复合材料的联合实验理论研究,其目的是确定其形成机制,原子结构,原子结构,孔结构以及催化和吸附性能,并具有最佳的递送和催化性能的设计材料的实际目标,以实现毒性的毒性,并具有质量的毒性。作为基于石墨素的组件石墨,将使用石墨氧化物和去角质石墨。合成之后将进行表征。然后将研究NH3和H2S与甲烷与纳米复合材料混合的相互作用。根据吸附物的化学性质,在环境条件下的反应性吸附的需求以及基于石墨烯的基于石墨烯的纳米复合材料的潜在检测能力来选择这些系统。对于后者,可以采用电导率的变化。为该研究选择的MOF将包括具有潜在活性Cu,Cr和Fe位点的水位稳定材料,例如Cu-BT或MIL-100。与实验程序同时,将使用分子模拟(蒙特卡洛,杂种反向蒙特卡洛和分子动力学)和(从头开始)密度功能理论进行双重尺度理论研究,以确定材料的原子结构,反应机制,反应性吸附能力和吸附的热量的原子结构的细节。这些理论上的结果将有助于将实验计划指向有前途的材料和条件。该研究项目将提供对合成条件,原子结构和孔形态之间关系的基本理解,以及针对有毒气体去除的新型G/MOF纳米复合材料的新类别的性能。这些新型材料可能会在其他分离和传感设备中找到应用。一般来说,应用的表面表征和理论方法的广泛范围将使人们更好地了解吸附剂和催化剂的表面化学。该研究与制定新策略直接相关,以设计有效的材料,以通过反应性吸附在环境条件下从空气中去除有毒气体。另一个重要的技术方面是将这些材料作为气体传感器应用。如果小分子气体在石墨层间空间内插入,则预期电导率会发生变化,并且该现象可用于检测低浓度范围内的有毒气体。对GO/MOF纳米复合材料上氨的初步探索性研究显示,与常规活性碳相比,吸附能力大约增加了三倍。因此,拟议的研究具有潜在的变革性。该项目将涉及两名研究生,两名本科研究人员和一名来自城市科学的高中的高中学生。 CCNY是少数派服务机构,该项目将为代表性不足的小组的成员提供研究并获得博士学位的可能性。 NCSU?s Agep/Opt-Ed和Ornl的数学和科学研究联盟(RAMS)夏季计划还将为招募人群不足的学生提供机会。学生的整个教育经验将基于研究和教育的整合。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Keith Gubbins其他文献
Keith Gubbins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Keith Gubbins', 18)}}的其他基金
Enhanced solubility in nanopores and its role in adsorption separations
纳米孔中溶解度的增强及其在吸附分离中的作用
- 批准号:
1603851 - 财政年份:2016
- 资助金额:
$ 21.65万 - 项目类别:
Standard Grant
GOALI: Molecular modeling of confined nano-phases: pressure enhancement, diffusion and electrical double layers
GOALI:受限纳米相的分子建模:压力增强、扩散和双电层
- 批准号:
1160151 - 财政年份:2012
- 资助金额:
$ 21.65万 - 项目类别:
Continuing Grant
"IRES: U.S.-Germany Collaborative Research on Self-Assembled Nanostructures"
“IRES:美德自组装纳米结构合作研究”
- 批准号:
1065466 - 财政年份:2011
- 资助金额:
$ 21.65万 - 项目类别:
Standard Grant
Collaborative Research: Confinement and Surface Effects on Heterogeneous Reactions with Diffusion in Nano-Porous Materials
合作研究:纳米多孔材料中非均相扩散反应的约束和表面效应
- 批准号:
1012780 - 财政年份:2010
- 资助金额:
$ 21.65万 - 项目类别:
Continuing Grant
GOALI: Molecular Modeling of Confined Nano-Phases and Novel Nano-Porous Materials
GOALI:受限纳米相和新型纳米多孔材料的分子建模
- 批准号:
0932656 - 财政年份:2009
- 资助金额:
$ 21.65万 - 项目类别:
Standard Grant
Collaborative Research: Removal of Toxic Gases by Intercalation and Reactive Adsorption
合作研究:插层和反应吸附去除有毒气体
- 批准号:
0754979 - 财政年份:2008
- 资助金额:
$ 21.65万 - 项目类别:
Standard Grant
US-Poland Workshop on Interfacial Phenomena and Advanced Materials
美国-波兰界面现象和先进材料研讨会
- 批准号:
0741367 - 财政年份:2007
- 资助金额:
$ 21.65万 - 项目类别:
Standard Grant
GOALI: Molecular Modeling of Confined Nano-Phases and Novel Nano-Porous Materials
GOALI:受限纳米相和新型纳米多孔材料的分子建模
- 批准号:
0626031 - 财政年份:2006
- 资助金额:
$ 21.65万 - 项目类别:
Standard Grant
U.S.-Germany: Cooperative Research on Surfactant Self-Aggregation on Solid Surfaces and in Pores
美德:固体表面和孔隙中表面活性剂自聚集的合作研究
- 批准号:
0541956 - 财政年份:2006
- 资助金额:
$ 21.65万 - 项目类别:
Standard Grant
NIRT: Surfactant Self-Assembly on Nano-Structured Surfaces: Multi-Scale Computational Prediction and Design
NIRT:纳米结构表面上的表面活性剂自组装:多尺度计算预测和设计
- 批准号:
0403633 - 财政年份:2004
- 资助金额:
$ 21.65万 - 项目类别:
Continuing Grant
相似国自然基金
胶质瘤线粒体靶向纳米药物合成及其诱导免疫治疗效应的机制研究
- 批准号:82303810
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于靶向性PIC构建的纳米反转型载药微泡增效CRPC化疗的研究
- 批准号:82373306
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向小胶质细胞的仿生甘草酸纳米颗粒构建及作用机制研究:脓毒症相关性脑病的治疗新策略
- 批准号:82302422
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
梯度亲钠纳米结构堆用高温热管复合吸液芯的吸钠铺展及传热特性研究
- 批准号:12305174
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Patient-Derived Kidney Organoids For Modeling Kidney Injury
用于肾损伤建模的患者肾脏类器官
- 批准号:
10663719 - 财政年份:2023
- 资助金额:
$ 21.65万 - 项目类别:
Collaborative Research: A Metamodeling Machine Learning Framework for Multiscale Behavior of Nano-Architectured Crystalline-Amorphous Composites
协作研究:纳米结构晶体非晶复合材料多尺度行为的元建模机器学习框架
- 批准号:
2331482 - 财政年份:2023
- 资助金额:
$ 21.65万 - 项目类别:
Standard Grant
Collaborative Research: A Metamodeling Machine Learning Framework for Multiscale Behavior of Nano-Architectured Crystalline-Amorphous Composites
协作研究:纳米结构晶体非晶复合材料多尺度行为的元建模机器学习框架
- 批准号:
2132336 - 财政年份:2022
- 资助金额:
$ 21.65万 - 项目类别:
Standard Grant
Collaborative Research: Waveguide-Integrated Graphene Nano-tweezERs (WIGNER) for rapid sorting and analysis of nanovesicles and viruses
合作研究:用于快速分选和分析纳米囊泡和病毒的波导集成石墨烯纳米镊子(WIGNER)
- 批准号:
2227460 - 财政年份:2022
- 资助金额:
$ 21.65万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: NV-RGRA: Non-Volatile Nano-Second Right-Grained Reconfigurable Architecture for Data-Intensive Machine Learning and Graph Computing
合作研究:CNS 核心:小型:NV-RGRA:用于数据密集型机器学习和图计算的非易失性纳秒右粒度可重构架构
- 批准号:
2228239 - 财政年份:2022
- 资助金额:
$ 21.65万 - 项目类别:
Standard Grant