GOALI: Molecular Modeling of Confined Nano-Phases and Novel Nano-Porous Materials
GOALI:受限纳米相和新型纳米多孔材料的分子建模
基本信息
- 批准号:0626031
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-10-01 至 2009-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Project AbstractGOALI: Molecular Modeling of Confined Nano-Phases and Novel Nano-Porous Materials (CTS-0626031)Keith Gubbins, North Carolina State Univ.; Matthias Thommes, Quantachrome, Instruments, Inc.This is a GOALI project involving university-industry collaboration between researchers at North Carolina State University (NCSU) and at Quantachrome Instruments, a leading maker of instruments for characterizing nano-structured materials. The aim of this project is to develop and apply atomistic simulation methods to obtain realistic atomic models of several new classes of synthetic nanoporous materials, and to use these to investigate confined phases within these materials and to assist in optimization of the materials for specific applications. The materials to be studied are templated mesoporous silicas, and the recently reported mesoporous carbons (CMKs), carbide-derived carbons and periodic mesoporous organosilicas (PMOs). These materials hold great promise for applications in microelectronics (mesoporous silicas), as electrodes in fuel cells, batteries and supercapacitors (mesoporous carbons, carbide-derived carbons), hydrogen storage (carbide-derived carbons), as catalytic and chromatographic supports (organosilicas), as sensors and in environmental remediation (organosilicas). Accurate and realistic atomic models of these materials are essential to the development of optimal material designs for these applications. Preparation of these materials and experimental studies of adsorption on them will be performed by researchers at Quantachrome Instruments, and this data will be provided to the NCSU researchers. Quantachrome scientists will also offer advice on directions for the modeling work carried out at NCSU. The NCSU researchers have already developed realistic models of templated mesoporous silica materials, which form the starting point in the synthesis of mesoporous carbons, and will develop Monte Carlo (MC) simulation methods that mimic the synthesis of these carbons within the silica, followed by silica removal and relaxation. Both lattice and off-lattice MC methods will be developed to model the organosilicas. MC and molecular dynamics simulations will be carried out to study adsorption and diffusion in these materials.Intellectual Merit. Because these novel materials are not crystalline, a combination of atomistic simulation and experiment provides the best route to developing realistic atomic models of them. Existing models of such materials assume over-simplified pore geometries (slit or cylinder shaped) and are inadequate for predicting the behavior of adsorbed phases. The realistic models that are being developed will make possible fundamental investigations of the influence of confinement and nature of the material on adsorption, phase changes, reactions and diffusion. PMOs offer the possibility to tune the chemistry of the pore walls to obtain a range of interactions from hydrophilic to hydrophobic, while the CMKs combine desirable features of carbons (conductivity, mechanical and thermal stability) with those of silicas (large pores, regular pore structure).Broader Impact. Improved understanding of the behavior of nano-phases confined within these novel nano-porous materials will impact a broad range of technologies, and is essential to the design of new biological and chemical sensors, nano-reactors, hydrogen storage media, electrodes for fuel cells and batteries, and nano-structured catalysts. Graduate and undergraduate students working on this project will learn modern multi-scale modeling methods, and will gain experience of international cooperative research through our active collaborations in this area with researchers in France, Germany, Poland, China and Hong Kong. Graduate students from under-represented groups will be recruited from colleges and universities in North Carolina with whom NCSU has established ties and programs.
项目摘要GOALI:受限纳米相和新型纳米多孔材料的分子建模(CTS-0626031),北卡罗来纳州立大学的Keith Gubbins;Quantachrome仪器公司的Matthias Thommes。这是一个目标项目,涉及北卡罗来纳州立大学(NCSU)和Quantachrome仪器公司的研究人员之间的大学和行业合作,Quantachrome仪器公司是表征纳米结构材料的仪器的领先制造商。该项目的目的是开发和应用原子模拟方法来获得几类新的合成纳米多孔材料的真实原子模型,并使用这些模型来研究这些材料中的受限相,并帮助优化特定应用的材料。被研究的材料是模板化的介孔二氧化硅,以及最近报道的介孔碳(CMK)、碳化物衍生碳和周期性介孔有机硅(PMO)。这些材料在微电子(介孔二氧化硅)、燃料电池、电池和超级电容器(介孔碳、碳化物衍生碳)的电极、储氢(碳化物衍生碳)、催化和色谱载体(有机硅)、传感器和环境修复(有机硅)等方面有着广阔的应用前景。这些材料的准确和真实的原子模型对于为这些应用开发最佳材料设计是至关重要的。这些材料的制备和吸附的实验研究将由Quantachrome Instruments的研究人员进行,这些数据将提供给NCSU的研究人员。Quantachrome科学家还将为NCSU进行的建模工作提供方向建议。NCSU的研究人员已经开发了模板化介孔二氧化硅材料的现实模型,这是合成介孔碳的起点,并将开发蒙特卡罗(MC)模拟方法,模拟这些碳在二氧化硅中的合成过程,随后是二氧化硅的去除和松弛。将发展晶格和非晶格MC方法来模拟有机硅。分子动力学和分子动力学模拟将被用来研究这些材料中的吸附和扩散。由于这些新材料不是结晶的,原子模拟和实验的结合为开发它们的真实原子模型提供了最佳途径。现有的此类材料模型假定孔几何结构过于简化(狭缝或圆柱形),不足以预测吸附相的行为。正在开发的现实模型将使对限制和材料性质对吸附、相变、反应和扩散的影响的基础研究成为可能。PMOS提供了调节孔壁化学的可能性,以获得从亲水到疏水的一系列相互作用,而CMK结合了碳的理想特性(导电性、机械稳定性和热稳定性)和二氧化硅的特性(大孔,规则的孔结构)。更好地了解这些新型纳米多孔材料中纳米相的行为将影响广泛的技术,并对设计新的生物和化学传感器、纳米反应器、氢存储介质、燃料电池和电池的电极以及纳米结构催化剂至关重要。参与该项目的研究生和本科生将学习现代多尺度建模方法,并将通过我们与法国、德国、波兰、中国和香港的研究人员在这一领域的积极合作获得国际合作研究的经验。来自代表性不足群体的研究生将从北卡罗来纳州的学院和大学招聘,NCSU与这些学院和大学建立了联系和项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Keith Gubbins其他文献
Keith Gubbins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Keith Gubbins', 18)}}的其他基金
Enhanced solubility in nanopores and its role in adsorption separations
纳米孔中溶解度的增强及其在吸附分离中的作用
- 批准号:
1603851 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
GOALI: Molecular modeling of confined nano-phases: pressure enhancement, diffusion and electrical double layers
GOALI:受限纳米相的分子建模:压力增强、扩散和双电层
- 批准号:
1160151 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
"IRES: U.S.-Germany Collaborative Research on Self-Assembled Nanostructures"
“IRES:美德自组装纳米结构合作研究”
- 批准号:
1065466 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
COLLABORATIVE RESEARCH: Nano-Engineered MOF-Graphene Materials: New Perspectives for Reactive Adsorption and Catalysis
合作研究:纳米工程MOF-石墨烯材料:反应吸附和催化的新视角
- 批准号:
1133066 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Confinement and Surface Effects on Heterogeneous Reactions with Diffusion in Nano-Porous Materials
合作研究:纳米多孔材料中非均相扩散反应的约束和表面效应
- 批准号:
1012780 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
GOALI: Molecular Modeling of Confined Nano-Phases and Novel Nano-Porous Materials
GOALI:受限纳米相和新型纳米多孔材料的分子建模
- 批准号:
0932656 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Removal of Toxic Gases by Intercalation and Reactive Adsorption
合作研究:插层和反应吸附去除有毒气体
- 批准号:
0754979 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
US-Poland Workshop on Interfacial Phenomena and Advanced Materials
美国-波兰界面现象和先进材料研讨会
- 批准号:
0741367 - 财政年份:2007
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
U.S.-Germany: Cooperative Research on Surfactant Self-Aggregation on Solid Surfaces and in Pores
美德:固体表面和孔隙中表面活性剂自聚集的合作研究
- 批准号:
0541956 - 财政年份:2006
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
NIRT: Surfactant Self-Assembly on Nano-Structured Surfaces: Multi-Scale Computational Prediction and Design
NIRT:纳米结构表面上的表面活性剂自组装:多尺度计算预测和设计
- 批准号:
0403633 - 财政年份:2004
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
Kidney injury molecular(KIM-1)介导肾小管上皮细胞自噬在糖尿病肾病肾间质纤维化中的作用
- 批准号:81300605
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
Molecular Plant
- 批准号:31224801
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
Molecular Plant
- 批准号:31024802
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Cellular & Molecular Immunology
- 批准号:30824806
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
CAREER: Microkinetic Modeling-Driven Discovery of Molecular Catalysts
职业:微动力学模型驱动的分子催化剂发现
- 批准号:
2339481 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Characterizing and modeling the genomewide molecular basis of gene-environment interactions
基因-环境相互作用的全基因组分子基础的表征和建模
- 批准号:
10712927 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Beginnings: Introducing Molecular Modeling Experiences to Underrepresented Students
起点:向代表性不足的学生介绍分子建模经验
- 批准号:
2322496 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Cooperative Agreement
Combining Absolute Quantitative Cross-Linking Mass Spectrometry and Molecular Modeling for Probing PROTAC-Mediated Ternary Complex Structures
结合绝对定量交联质谱和分子建模来探测 PROTAC 介导的三元复杂结构
- 批准号:
10572720 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
CAREER: Molecular Modeling of Ring Polymer Mechanics - Expanding Applicability of Ring Polymer
职业:环状聚合物力学的分子模拟 - 扩展环状聚合物的适用性
- 批准号:
2236693 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Rational PROTAC design enabled by integrated in silico molecular modeling and in vitro biomimetic affinity assessment
通过集成计算机分子建模和体外仿生亲和力评估实现合理的 PROTAC 设计
- 批准号:
10728205 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
CAREER: CAS-Climate: Molecular Physical Electrochemistry at Interfaces - Visualizing and Modeling Charge Transfer at the Anode and Cathode
职业:CAS-Climate:界面处的分子物理电化学 - 阳极和阴极的电荷转移可视化和建模
- 批准号:
2142821 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Automated particle tracking and stochastic modeling of molecular motion in submicron living systems
亚微米生命系统中分子运动的自动粒子跟踪和随机建模
- 批准号:
RGPIN-2019-06435 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Molecular Modeling of Thermodynamic Properties of Fluids and Fluid Mixtures
流体和流体混合物热力学性质的分子模拟
- 批准号:
RGPIN-2018-04212 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Unraveling Structural and Mechanistic Aspects of RNA Viral Frameshifting Elements by Graph Theory and Molecular Modeling
合作研究:通过图论和分子建模揭示RNA病毒移码元件的结构和机制
- 批准号:
2151777 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant














{{item.name}}会员




