Collaborative Research: Fundamentals of Natural Gas Conversion to Fuels and Chemicals over Molybdenum Nanostructures
合作研究:通过钼纳米结构将天然气转化为燃料和化学品的基础知识
基本信息
- 批准号:1134012
- 负责人:
- 金额:$ 27.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-11-01 至 2014-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Natural gas, or methane, is an abundant resource that is unfortunately underutilized due to a lack of efficient technologies that enable its conversion into easily condensable or liquid products amenable to transport. Most natural gas reserves and the associated gas produced in the course of crude oil production at remote locations are classified as stranded, and venting and flaring is a typical method of disposal, resulting in a significant environmental issue as well as a waste of hydrocarbon resource. Natural gas conversion to liquid fuels and chemicals represents a highly desirable goal since North America has some of the largest gas reserves in the world that can serve as a safe and stable source of hydrocarbons. Production of chemicals and liquid fuels from methane is currently dominated by technologies that rely on generation of synthesis gas as the first step. These technologies, however, have an inherent inefficiency since the breaking of all methane C-H bonds in synthesis gas production has to be substantially reversed in subsequent steps. There are, therefore, intense current research efforts for development of direct methods for methane conversion. Research on catalytic methane activation remains an area of high scientific and industrial significance but the catalytic chemistry of methane activation is currently poorly understood. This situation will change with an award made to investigators Simon Podkolzin of the Stevens Institute of Technology, New Jersey, and Israel Wachs of Lehigh University, Pennsylvania. The objective of the proposed research is to develop a molecular level model of catalytic methane conversion to liquid fuels and chemicals by zeolite-supported Mo nanostructures. Methane conversion over Mo nanostructures supported on shape selective zeolites offers a promising alternative for selective methane activation. This chemistry was recently reported by a group from Dalian, China. In this process of methane dehydoaromatization, methane can be converted directly in a single step into benzene with a selectivity of 70-80 mol % and conversions exceeding 10 mol %. In contrast to other direct methane activation chemistries, this process has two unique advantages since methane is converted without any additional reactants. First, complete oxidation of methane to carbon oxides is not possible as in the processes employing O2 or H2O addition. This is also advantageous from the safety perspective. Second, natural gas processing can in concept be performed at remote locations since transportation of reagents is not required. The PIs intend to study the dynamics of active surface sites at the nanoscale under reaction conditions. They will combine the latest developments in molecular spectroscopic characterization techniques (Raman, IR and UV-vis) at the nanoscale under reaction conditions at elevated temperatures with catalyst kinetic testing, kinetic modeling, and quantum-chemical calculations. Advanced time-resolved atomic XANES/EXAFS characterization will be performed in collaboration with Brookhaven National Laboratory. Results of this program will have transformative effects in nanotechnology and energy research by developing nanomaterials for efficient conversion of natural gas into liquid hydrocarbons and potentially making available large reserves of stranded gas, while addressing the environmental issue of venting and burning of associated gas at remote locations. A broad spectrum of educational outreach projects is an integral part of the program, including research experiences as well as university and K-12 teaching modules on energy research and nanomaterials.
天然气(或称甲烷)是一种丰富的资源,但不幸的是,由于缺乏能够将其转化为易于冷凝或易于运输的液体产品的有效技术,该资源并未得到充分利用。大多数天然气储量和偏远地区原油生产过程中产生的伴生气都被搁置,放空和火炬是典型的处置方法,导致严重的环境问题和碳氢化合物资源的浪费。将天然气转化为液体燃料和化学品是一个非常理想的目标,因为北美拥有世界上最大的天然气储量,可以作为安全稳定的碳氢化合物来源。目前,利用甲烷生产化学品和液体燃料的技术主要依赖于生成合成气作为第一步。然而,这些技术具有固有的低效率,因为合成气生产中所有甲烷C-H键的断裂必须在后续步骤中基本上逆转。因此,目前正在大力研究开发甲烷转化的直接方法。 催化甲烷活化的研究仍然是一个具有高度科学和工业意义的领域,但目前对甲烷活化的催化化学知之甚少。随着新泽西州史蒂文斯理工学院的西蒙·波德科尔津 (Simon Podkolzin) 和宾夕法尼亚州利哈伊大学 (Lehigh University) 的以色列·沃克斯 (Israel Wachs) 获得奖励,这种情况将得到改变。本研究的目的是开发一种通过沸石支撑的钼纳米结构将甲烷催化转化为液体燃料和化学品的分子水平模型。形状选择性沸石支持的钼纳米结构上的甲烷转化为选择性甲烷活化提供了一种有前途的替代方案。中国大连的一个研究小组最近报道了这种化学反应。在该甲烷脱氢芳构化过程中,甲烷可以一步直接转化为苯,选择性为70-80 mol%,转化率超过10 mol%。与其他直接甲烷活化化学相比,该过程具有两个独特的优势,因为甲烷的转化无需任何额外的反应物。首先,甲烷不可能像使用 O2 或 H2O 添加的工艺那样完全氧化为碳氧化物。从安全角度来看这也是有利的。其次,天然气加工理论上可以在偏远地区进行,因为不需要运输试剂。 PI 打算研究反应条件下纳米级活性表面位点的动力学。他们将在高温反应条件下将纳米级分子光谱表征技术(拉曼、红外和紫外-可见)的最新发展与催化剂动力学测试、动力学建模和量子化学计算相结合。 将与布鲁克海文国家实验室合作进行先进的时间分辨原子 XANES/EXAFS 表征。该计划的成果将对纳米技术和能源研究产生变革性影响,通过开发纳米材料将天然气有效转化为液态碳氢化合物,并有可能提供大量滞留气体,同时解决偏远地区伴生气排放和燃烧的环境问题。广泛的教育推广项目是该计划不可或缺的一部分,包括研究经验以及能源研究和纳米材料方面的大学和 K-12 教学模块。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Israel Wachs其他文献
Israel Wachs的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Israel Wachs', 18)}}的其他基金
Molecular Structure-Activity/Selectivity of Ethane Oxidative Dehydrogenation to Ethylene by MoVNbTe Mixed Oxide M1 Phase Catalysts
MoVNbTe混合氧化物M1相催化剂乙烷氧化脱氢制乙烯的分子结构-活性/选择性
- 批准号:
2221714 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Molecular Design of Solid Acid Catalysts for Upgrading Shale Gas Ethylene to Butenes
页岩气乙烯升级为丁烯的固体酸催化剂的分子设计
- 批准号:
2102555 - 财政年份:2021
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
GOALI: Promotion Mechanisms of Supported Ag/Al2O3 Catalysts for Selective Ethylene Epoxidation
目标:负载型Ag/Al2O3催化剂选择性乙烯环氧化的促进机制
- 批准号:
1804104 - 财政年份:2018
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
MRI: Acquisition of an Advanced Integrated Environmental X-ray Photoelectron Spectroscopy/Optical Spectroscopy Instrument for Simultaneous Surface, Bulk and Gas/Liquid Phase
MRI:购置先进的集成环境 X 射线光电子能谱/光学能谱仪器,可同时进行表面、体相和气/液相分析
- 批准号:
1726841 - 财政年份:2017
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Support for U.S. Participants at the 16th International Congress on Catalysis Location: Beijing, China Date: July 3-8, 2016
对第十六届国际催化大会美国与会者的支持地点:中国北京日期:2016 年 7 月 3-8 日
- 批准号:
1602787 - 财政年份:2016
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Conversion of Bioethanol to Butadiene for Manufacture of Green Tires
将生物乙醇转化为丁二烯用于制造绿色轮胎
- 批准号:
1605805 - 财政年份:2016
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
SusChEM: Rational Design of High Temperature Water-Gas Shift Catalysts with Non-Toxic Earth-Abundant Elements
SusChEM:采用地球丰富的无毒元素的高温水煤气变换催化剂的合理设计
- 批准号:
1511689 - 财政年份:2015
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
SusChEM: Molecular Level Foundation for Olefin Metathesis by Heterogeneous Supported WO3/SiO2 Catalysts
SusChEM:多相负载 WO3/SiO2 催化剂进行烯烃复分解的分子水平基础
- 批准号:
1301262 - 财政年份:2013
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Operando Molecular Spectroscopy during Catalytic Biomass Pyrolysis
催化生物质热解过程中的操作分子光谱
- 批准号:
1236716 - 财政年份:2012
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Support for U.S. Participants at the 15th International Congress on Catalysis (July 1-6, 2012 / Munich, Germany)
为第 15 届国际催化大会的美国与会者提供支持(2012 年 7 月 1-6 日/德国慕尼黑)
- 批准号:
1228024 - 财政年份:2012
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SaTC: CORE: Medium: Rethinking the Fundamentals of Tunneling Technologies for Security, Privacy, and Usability
协作研究:SaTC:核心:中:重新思考隧道技术的安全性、隐私性和可用性的基础知识
- 批准号:
2141512 - 财政年份:2022
- 资助金额:
$ 27.5万 - 项目类别:
Continuing Grant
Collaborative Research: Gamified Learning of Computing Hardware Fundamentals
协作研究:计算硬件基础知识的游戏化学习
- 批准号:
2142696 - 财政年份:2022
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: JUNO3: Towards an Internet of Federated Digital Twins (IoFDT) for Society 5.0: Fundamentals and Experimentation
合作研究:NetS:JUNO3:迈向社会 5.0 的联合数字孪生 (IoFDT) 互联网:基础知识和实验
- 批准号:
2210254 - 财政年份:2022
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: Gamified Learning of Computing Hardware Fundamentals
协作研究:计算硬件基础知识的游戏化学习
- 批准号:
2142473 - 财政年份:2022
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Rethinking the Fundamentals of Tunneling Technologies for Security, Privacy, and Usability
协作研究:SaTC:核心:中:重新思考隧道技术的安全性、隐私性和可用性的基础知识
- 批准号:
2141547 - 财政年份:2022
- 资助金额:
$ 27.5万 - 项目类别:
Continuing Grant
Collaborative Research: NeTS: JUNO3: Towards an Internet of Federated Digital Twins (IoFDT) for Society 5.0: Fundamentals and Experimentation
合作研究:NetS:JUNO3:迈向社会 5.0 的联合数字孪生 (IoFDT) 互联网:基础知识和实验
- 批准号:
2210255 - 财政年份:2022
- 资助金额:
$ 27.5万 - 项目类别:
Continuing Grant
Collaborative Research: SWIFT: LARGE: AI-Enabled Spectrum Coexistence between Active Communications and Passive Radio Services: Fundamentals, Testbed and Data
合作研究:SWIFT:大型:主动通信和无源无线电服务之间人工智能支持的频谱共存:基础知识、测试平台和数据
- 批准号:
2202972 - 财政年份:2021
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Localization in Millimeter Wave Cellular Networks: Fundamentals, Algorithms, and Measurement-inspired Simulator
合作研究: CNS 核心:媒介:毫米波蜂窝网络的本地化:基础知识、算法和测量启发的模拟器
- 批准号:
2106602 - 财政年份:2021
- 资助金额:
$ 27.5万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Medium: Localization in Millimeter Wave Cellular Networks: Fundamentals, Algorithms, and Measurement-inspired Simulator
合作研究: CNS 核心:媒介:毫米波蜂窝网络的本地化:基础知识、算法和测量启发的模拟器
- 批准号:
2107276 - 财政年份:2021
- 资助金额:
$ 27.5万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Small: Fundamentals of Ultra-Dense Wireless Networks with Generalized Repulsion
合作研究:中枢神经系统核心:小型:具有广义斥力的超密集无线网络的基础
- 批准号:
2150486 - 财政年份:2021
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant














{{item.name}}会员




