RAPID: Automating Emergency Data and Metadata Management to Support Effective Short Term and Long Term Disaster Recovery Efforts

RAPID:自动化应急数据和元数据管理,支持有效的短期和长期灾难恢复工作

基本信息

  • 批准号:
    1138666
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-08-01 至 2012-07-31
  • 项目状态:
    已结题

项目摘要

Proposal #: CNS 11-38666PI(s): Pu, CaltonInstitution: Georgia Institute of TechnologyTitle: RAPID: Automating Emergency Data and Metadata Management to Support Effective Short and Long Term Disaster Recovery EffortsProject Proposed:This RAPID project, collecting, processing, and disseminating appropriate sensor data, aims to contribute to an effective recovery. The work addresses the challenges of sensor data flood during an emergency, through integration, evaluation, and enhancement of current data management tools, particularly with respect to meta-data. Automation of data and meta-data collection, processing, and dissemination are expected to alleviate the time pressure on human operators. The fundamental tools support quality information dimensions such as provenance, timeliness, security, privacy, and confidentiality, enabling an appropriate interpretation of the sensor data in the long term. For the short term, the tools are expected to help relief the workers as data producers and consumers; for the long term, they will provide high quality information for disaster recovery decision support systems. Additionally, the cloud-based system architecture and implementation of the CERCS cluster of Open Cirrus provide high availability and ease of access for recovery efforts in Japan as well as for researchers worldwide. The integration of techniques from several information dimensions (e.g., data provenance, surety, and privacy) and the application of code generation techniques to automate the data and metadata management tools constitute the intellectual merit of the proposed research. New challenges will be encountered in the potential interferences among the quality of information dimensions. It is also a new challenge to apply code generation techniques in the adaptation of software tools to accommodate changes imposed by environmental damages and contextual as well as cultural differences among countries.The investigator collaborates with Prof. Masaru Kitsuregawa from the University of Tokyo, Japan, a leading researcher in data management. He is the first database researcher from Asia to win the ACM SOGMOD Innovation Award (2009). In addition to a letter of support and biographical sketches of the Japanese collaborator, a support letter has been submitted by Intel to OISE, CISE and Engineering. Intel has offered access to the Intel Open Cirrus cluster to conduct the research.Broader Impacts: The proposed tools should contribute to improve both the quantity and quality of data being collected by a variety of sensors, thus improving the effectiveness of short and long term decision making. For example, measured radiation levels in agricultural products can serve as an indication of spreading radioactive contaminations that complement the direct readings of radiation in soil samples. The project enables informed decisions based on precise interpretation of real sensor data that may improve the quality of life at both human and social levels, while reducing costs. The project will also contribute in graduate student education.
提案号:CNS 11- 386666 pi (s): Pu, calton机构:Georgia Institute of technology标题:RAPID:自动化应急数据和元数据管理以支持有效的短期和长期灾难恢复工作项目建议:该RAPID项目收集、处理和传播适当的传感器数据,旨在促进有效的恢复。通过整合、评估和增强当前数据管理工具,特别是元数据管理工具,这项工作解决了紧急情况下传感器数据泛滥的挑战。数据和元数据收集、处理和传播的自动化有望减轻操作员的时间压力。基本工具支持质量信息维度,如来源、及时性、安全性、隐私性和机密性,从而能够长期对传感器数据进行适当的解释。在短期内,这些工具有望帮助缓解作为数据生产者和消费者的工人;从长远来看,它们将为灾难恢复决策支持系统提供高质量的信息。此外,基于云的系统架构和开放卷云CERCS集群的实现为日本以及全球的研究人员提供了高可用性和易于访问的恢复工作。集成来自多个信息维度的技术(例如,数据来源、保证和隐私)以及应用代码生成技术来自动化数据和元数据管理工具,构成了本研究的智力价值。信息维度质量之间的潜在干扰将面临新的挑战。将代码生成技术应用于软件工具的调整,以适应环境破坏和各国之间的背景和文化差异所造成的变化,这也是一项新的挑战。研究者与日本东京大学的Masaru Kitsuregawa教授合作,他是数据管理领域的领先研究人员。他是亚洲第一位获得ACM SOGMOD创新奖(2009年)的数据库研究人员。除了一封支持信和日本合作者的个人简介外,英特尔还向OISE、CISE和Engineering提交了一封支持信。英特尔已经提供访问英特尔开放卷云集群来进行研究。更广泛的影响:拟议的工具应有助于提高各种传感器收集的数据的数量和质量,从而提高短期和长期决策的有效性。例如,测量农产品中的辐射水平可以作为放射性污染扩散的指示,补充土壤样品中辐射的直接读数。该项目可以根据对真实传感器数据的精确解释做出明智的决策,从而提高人类和社会的生活质量,同时降低成本。该项目还将有助于研究生教育。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Calton Pu其他文献

Editorial for CollaborateCom 2011 Special Issue
  • DOI:
    10.1007/s11036-013-0436-0
  • 发表时间:
    2013-02-28
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    James Caverlee;Calton Pu;Dimitrios Georgakopoulos;James Joshi
  • 通讯作者:
    James Joshi
A rigorous approach to facilitate and guarantee the correctness of the genetic testing management in human genome information systems
  • DOI:
    10.1186/1471-2164-12-s4-s13
  • 发表时间:
    2011-01-01
  • 期刊:
  • 影响因子:
    3.700
  • 作者:
    Luciano V Araújo;Simon Malkowski;Kelly R Braghetto;Maria R Passos-Bueno;Mayana Zatz;Calton Pu;João E Ferreira
  • 通讯作者:
    João E Ferreira
Buffer overflows: attacks and defenses for the vulnerability of the decade
缓冲区溢出:十年来漏洞的攻击与防御
Editorial: Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2012)
  • DOI:
    10.1007/s11036-014-0532-9
  • 发表时间:
    2014-09-16
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Lakshmish Ramaswamy;Barbara Carminati;James Joshi;Calton Pu
  • 通讯作者:
    Calton Pu
JTangCSB: A Cloud Service Bus for Cloud and Enterprise Application Integration
JTangCSB:用于云和企业应用集成的云服务总线
  • DOI:
    10.1109/mic.2014.62
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xingjian Lu;Calton Pu;Zhaohui Wu;Hanwei Chen
  • 通讯作者:
    Hanwei Chen

Calton Pu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Calton Pu', 18)}}的其他基金

RAPID: Tracking and Evaluation of the Coronavirus (COVID-19) Epidemic Propagation by Finding and Maintaining Live Knowledge in Social Media
RAPID:通过在社交媒体中查找和维护实时知识来跟踪和评估冠状病毒(COVID-19)的流行传播
  • 批准号:
    2026945
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
EAGER: Live Reality: Sustainable and Up-to-Date Information Quality in Live Social Media through Continuous Evidence-Based Knowledge Acquisition
EAGER:实时现实:通过持续的循证知识获取,实时社交媒体中可持续且最新的信息质量
  • 批准号:
    2039653
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
HNDS-I: Collaborative Research: Developing a Data Platform for Analysis of Nonprofit Organizations
HNDS-I:协作研究:开发用于分析非营利组织的数据平台
  • 批准号:
    2024320
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
1st US-Japan Workshop Enabling Global Collaborations in Big Data Research; June, 2017, Atlanta, GA
第一届美日研讨会促进大数据研究的全球合作;
  • 批准号:
    1741034
  • 财政年份:
    2017
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
RCN: SAVI: Adaptive Management and Use of Resilient Infrastructures in Smart Cities: Support for Global Collaborative Research on Real-Time Analytics of Heterogeneous Big Data
RCN:SAVI:智慧城市弹性基础设施的适应性管理和使用:支持异构大数据实时分析的全球协作研究
  • 批准号:
    1550379
  • 财政年份:
    2015
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
EAGER: An Exploratory Study of Multi-Hazard Management through Multi-Source Integration of Physical and Social Sensors
EAGER:通过物理和社会传感器的多源集成进行多危害管理的探索性研究
  • 批准号:
    1402266
  • 财政年份:
    2014
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
CSR: Small: Lightning in Clouds: Detection and Characterization of Very Short Bottlenecks
CSR:小:云中闪电:极短瓶颈的检测和表征
  • 批准号:
    1421561
  • 财政年份:
    2014
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
SAVI: EAGER: for Global Research on Applying Information Technology to Support Effective Disaster Management (GRAIT-DM)
SAVI:EAGER:应用信息技术支持有效灾害管理的全球研究 (GRAIT-DM)
  • 批准号:
    1250260
  • 财政年份:
    2012
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
CSR:Small: Multi-Bottlenecks: What They Are and How to Find Them
CSR:小:多瓶颈:它们是什么以及如何找到它们
  • 批准号:
    1116451
  • 财政年份:
    2011
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
II-NEW: Collaborative Research: Spam Processing, Archiving, and Monitoring Community Facility (SPAM Commons)
II-新:协作研究:垃圾邮件处理、归档和监控社区设施 (SPAM Commons)
  • 批准号:
    0855180
  • 财政年份:
    2009
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似海外基金

Automating a novel multi-tool additive and subtractive manufacturing platform for micrometre-resolution prototyping across diverse industries
自动化新型多工具增材和减材制造平台,用于跨不同行业的微米分辨率原型制作
  • 批准号:
    10097846
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Collaborative R&D
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322534
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
AUTOFARM: Automating UAV Technology for Orchards to Focus Agricultural Resource Management
AUTOFARM:果园自动化无人机技术,专注于农业资源管理
  • 批准号:
    10108599
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Launchpad
A versatile machine learning image recognition software for automating synchrotron Macromolecular Beamlines
用于自动化同步加速器高分子束线的多功能机器学习图像识别软件
  • 批准号:
    BB/Z514329/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Research Grant
AI-Driven Methodologies for Automating Operations in 5G/6G Networks
用于 5G/6G 网络中自动化操作的人工智能驱动方法
  • 批准号:
    2903756
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Studentship
RII Track-4:@NASA: Automating Character Extraction for Taxonomic Species Descriptions Using Neural Networks, Transformer, and Computer Vision Signal Processing Architectures
RII Track-4:@NASA:使用神经网络、变压器和计算机视觉信号处理架构自动提取分类物种描述的字符
  • 批准号:
    2327168
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322533
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Automating data acquisition and data processing pipeline via artificial intelligence and machine learning approaches to allow at-home use of a novel breast cancer screening method employing bra-based elastography imaging.
通过人工智能和机器学习方法自动化数据采集和数据处理流程,以便在家使用基于胸罩的弹性成像成像的新型乳腺癌筛查方法。
  • 批准号:
    486956
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Operating Grants
Automating Assessment of Contextualization of Care During the Clinical Encounter
在临床遇到的情况下自动评估护理情境化
  • 批准号:
    10595446
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
Collaborative Research: IMR: MM-1B: Automating Privacy-Preserving Data Sharing of Campus Network Traffic Logs
合作研究:IMR:MM-1B:自动化校园网络流量日志的隐私保护数据共享
  • 批准号:
    2319421
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了