RAPID: Automating Emergency Data and Metadata Management to Support Effective Short Term and Long Term Disaster Recovery Efforts
RAPID:自动化应急数据和元数据管理,支持有效的短期和长期灾难恢复工作
基本信息
- 批准号:1138666
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-01 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal #: CNS 11-38666PI(s): Pu, CaltonInstitution: Georgia Institute of TechnologyTitle: RAPID: Automating Emergency Data and Metadata Management to Support Effective Short and Long Term Disaster Recovery EffortsProject Proposed:This RAPID project, collecting, processing, and disseminating appropriate sensor data, aims to contribute to an effective recovery. The work addresses the challenges of sensor data flood during an emergency, through integration, evaluation, and enhancement of current data management tools, particularly with respect to meta-data. Automation of data and meta-data collection, processing, and dissemination are expected to alleviate the time pressure on human operators. The fundamental tools support quality information dimensions such as provenance, timeliness, security, privacy, and confidentiality, enabling an appropriate interpretation of the sensor data in the long term. For the short term, the tools are expected to help relief the workers as data producers and consumers; for the long term, they will provide high quality information for disaster recovery decision support systems. Additionally, the cloud-based system architecture and implementation of the CERCS cluster of Open Cirrus provide high availability and ease of access for recovery efforts in Japan as well as for researchers worldwide. The integration of techniques from several information dimensions (e.g., data provenance, surety, and privacy) and the application of code generation techniques to automate the data and metadata management tools constitute the intellectual merit of the proposed research. New challenges will be encountered in the potential interferences among the quality of information dimensions. It is also a new challenge to apply code generation techniques in the adaptation of software tools to accommodate changes imposed by environmental damages and contextual as well as cultural differences among countries.The investigator collaborates with Prof. Masaru Kitsuregawa from the University of Tokyo, Japan, a leading researcher in data management. He is the first database researcher from Asia to win the ACM SOGMOD Innovation Award (2009). In addition to a letter of support and biographical sketches of the Japanese collaborator, a support letter has been submitted by Intel to OISE, CISE and Engineering. Intel has offered access to the Intel Open Cirrus cluster to conduct the research.Broader Impacts: The proposed tools should contribute to improve both the quantity and quality of data being collected by a variety of sensors, thus improving the effectiveness of short and long term decision making. For example, measured radiation levels in agricultural products can serve as an indication of spreading radioactive contaminations that complement the direct readings of radiation in soil samples. The project enables informed decisions based on precise interpretation of real sensor data that may improve the quality of life at both human and social levels, while reducing costs. The project will also contribute in graduate student education.
提案#:CNS 11-38666PI(S):PU,Caltoninstitution:Georgia Technology Tittle:快速:自动化紧急数据和元数据管理,以支持有效的短期和长期灾难恢复工作:提出的快速项目,收集,处理,处理,处理,处理,并散发出适当的传感器数据,以贡献适当的传感器,以贡献有效回收。这项工作通过集成,评估和增强当前数据管理工具,特别是在元数据方面,解决了紧急情况下传感器数据洪水的挑战。数据和元数据收集,处理和传播的自动化有望减轻人类运营商的时间压力。基本工具支持质量信息维度,例如出处,及时性,安全性,隐私和机密性,从而可以长期对传感器数据进行适当的解释。在短期内,这些工具有望帮助使工人成为数据生产者和消费者;从长远来看,他们将为灾难恢复决策支持系统提供高质量的信息。此外,基于云的系统体系结构和开放式CIRRU的CERCS群集的实施,为日本以及全球研究人员提供了高可用性和易于访问权限。从几个信息维度(例如数据出处,保证和隐私)以及代码生成技术自动化数据和元数据管理工具的应用的整合,构成了拟议研究的知识分子。信息维度质量的潜在干扰将遇到新的挑战。将代码生成技术应用于软件工具的适应,以适应国家的环境损害和背景和文化差异所施加的变化,这也是一个新的挑战。研究人员与日本东京大学的Masaru Kitsuregawa教授合作,日本,主要研究人员,数据管理领域。他是亚洲第一位获得ACM Sogmod创新奖(2009年)的数据库研究人员。除了日本合作者的支持信和传记素描之外,英特尔还提交了一封支持信。英特尔提供了对英特尔开放式卷心群集进行研究的访问。Broader的影响:拟议的工具应有助于提高各种传感器收集的数据的数量和质量,从而提高短期和长期决策的有效性。例如,农产品中测得的辐射水平可以作为扩散放射性污染的指示,可以补充土壤样品中辐射的直接读数。该项目基于对实际传感器数据的精确解释,可以提高人力和社会水平的生活质量,同时降低成本,从而实现明智的决策。该项目还将为研究生教育做出贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Calton Pu其他文献
Buffer overflows: attacks and defenses for the vulnerability of the decade
缓冲区溢出:十年来漏洞的攻击与防御
- DOI:
10.1109/discex.2000.821514 - 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
Crispin Cowan;Perry Wagle;Calton Pu;Steve Beattie;Jonathan Walpole - 通讯作者:
Jonathan Walpole
JTangCSB: A Cloud Service Bus for Cloud and Enterprise Application Integration
JTangCSB:用于云和企业应用集成的云服务总线
- DOI:
10.1109/mic.2014.62 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Xingjian Lu;Calton Pu;Zhaohui Wu;Hanwei Chen - 通讯作者:
Hanwei Chen
Calton Pu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Calton Pu', 18)}}的其他基金
RAPID: Tracking and Evaluation of the Coronavirus (COVID-19) Epidemic Propagation by Finding and Maintaining Live Knowledge in Social Media
RAPID:通过在社交媒体中查找和维护实时知识来跟踪和评估冠状病毒(COVID-19)的流行传播
- 批准号:
2026945 - 财政年份:2020
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
HNDS-I: Collaborative Research: Developing a Data Platform for Analysis of Nonprofit Organizations
HNDS-I:协作研究:开发用于分析非营利组织的数据平台
- 批准号:
2024320 - 财政年份:2020
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
EAGER: Live Reality: Sustainable and Up-to-Date Information Quality in Live Social Media through Continuous Evidence-Based Knowledge Acquisition
EAGER:实时现实:通过持续的循证知识获取,实时社交媒体中可持续且最新的信息质量
- 批准号:
2039653 - 财政年份:2020
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
1st US-Japan Workshop Enabling Global Collaborations in Big Data Research; June, 2017, Atlanta, GA
第一届美日研讨会促进大数据研究的全球合作;
- 批准号:
1741034 - 财政年份:2017
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
RCN: SAVI: Adaptive Management and Use of Resilient Infrastructures in Smart Cities: Support for Global Collaborative Research on Real-Time Analytics of Heterogeneous Big Data
RCN:SAVI:智慧城市弹性基础设施的适应性管理和使用:支持异构大数据实时分析的全球协作研究
- 批准号:
1550379 - 财政年份:2015
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
EAGER: An Exploratory Study of Multi-Hazard Management through Multi-Source Integration of Physical and Social Sensors
EAGER:通过物理和社会传感器的多源集成进行多危害管理的探索性研究
- 批准号:
1402266 - 财政年份:2014
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
CSR: Small: Lightning in Clouds: Detection and Characterization of Very Short Bottlenecks
CSR:小:云中闪电:极短瓶颈的检测和表征
- 批准号:
1421561 - 财政年份:2014
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
SAVI: EAGER: for Global Research on Applying Information Technology to Support Effective Disaster Management (GRAIT-DM)
SAVI:EAGER:应用信息技术支持有效灾害管理的全球研究 (GRAIT-DM)
- 批准号:
1250260 - 财政年份:2012
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
CSR:Small: Multi-Bottlenecks: What They Are and How to Find Them
CSR:小:多瓶颈:它们是什么以及如何找到它们
- 批准号:
1116451 - 财政年份:2011
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
II-NEW: Collaborative Research: Spam Processing, Archiving, and Monitoring Community Facility (SPAM Commons)
II-新:协作研究:垃圾邮件处理、归档和监控社区设施 (SPAM Commons)
- 批准号:
0855180 - 财政年份:2009
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似国自然基金
工业自动化与创新的产业外溢:理论与实证
- 批准号:72302245
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
开发2’-氟阿拉伯糖核酸的自动化Sanger测序新方法
- 批准号:22307058
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度学习的三维物体智能化抓取策略及机械手自动化结构设计研究
- 批准号:62302517
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
全自动化运行城市轨道交通乘务计划优化问题研究
- 批准号:72301192
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
当机器成为我们的领导:领导职能自动化的内涵、测量及其多层次后果研究
- 批准号:72371260
- 批准年份:2023
- 资助金额:40.00 万元
- 项目类别:面上项目
相似海外基金
Mining Social Media Big Data for Toxicovigilance: Automating the Monitoring of Prescription Medication Abuse via Natural Language Processing and Machine Learning Methods
挖掘社交媒体大数据进行毒物警戒:通过自然语言处理和机器学习方法自动监测处方药滥用
- 批准号:
10001871 - 财政年份:2019
- 资助金额:
$ 5万 - 项目类别:
CHS: Small: Collaborative Research: Automating Relevance and Trust Detection in Social Media Data for Emergency Response
CHS:小型:协作研究:自动化社交媒体数据中的相关性和信任检测以进行紧急响应
- 批准号:
1903963 - 财政年份:2018
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
CHS: Small: Collaborative Research: Automating Relevance and Trust Detection in Social Media Data for Emergency Response
CHS:小型:协作研究:自动化社交媒体数据中的相关性和信任检测以进行紧急响应
- 批准号:
1814271 - 财政年份:2017
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
CHS: Small: Collaborative Research: Automating Relevance and Trust Detection in Social Media Data for Emergency Response
CHS:小型:协作研究:自动化社交媒体数据中的相关性和信任检测以进行紧急响应
- 批准号:
1526542 - 财政年份:2015
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
CHS: Small: Collaborative Research: Automating Relevance and Trust Detection in Social Media Data for Emergency Response
CHS:小型:协作研究:自动化社交媒体数据中的相关性和信任检测以进行紧急响应
- 批准号:
1526678 - 财政年份:2015
- 资助金额:
$ 5万 - 项目类别:
Standard Grant