EAGER: Live Reality: Sustainable and Up-to-Date Information Quality in Live Social Media through Continuous Evidence-Based Knowledge Acquisition
EAGER:实时现实:通过持续的循证知识获取,实时社交媒体中可持续且最新的信息质量
基本信息
- 批准号:2039653
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Social media have complemented traditional press with immediate reports and worldwide coverage. However, they also receive and propagate significant amounts of misinformation and disinformation such as fake news. A skillful mixture of verifiable facts and outrageous fiction, fake news aim to attract reader attention, make an immediate initial impact, and then quickly forgotten. Even as disposable novelty, fake news have had significant impact on real world events such as elections. For human readers and machine learning (ML) classifiers, distinguishing fake news from real news has been challenging due to their sophisticated construction, camouflaging fiction with facts, as well as continuously evolving by incorporating the newest and hottest topics as they mutate. The Live Reality project will track the evolution of fake news through continuous import of reliable, verified facts from authoritative sources, and separate the facts from fiction, to catch fake news in the act. The automated real-time tracking capability is a significant innovation compared to traditional ML classifiers generated from manually labeled training data, which are constrained to finding historical fake news, long after the fact.Given the short lifespan of disposable novelty (days or hours), catching fake news in the act requires significant innovation in two dimensions. First, the ML classifier must be continuously updated to recognize true novelty that have never been seen before. Second, the update must be sufficiently timely to catch disposable novelty before they expire, e.g., within hours of their initial dissemination. Continuous collection of live social media and authoritative sources will generate novel fake news and associated ground truth, which are integrated through the Evidence-Based Knowledge Acquisition (EBKA) approach, which adds reliable information from authoritative sources into a continuously adaptive teamed classifier to distinguish the verifiable facts from the fiction in fake news. As news topics evolve, fake news are expected to follow, and EBKA will generate and integrate new sub-models into the live teamed classifier to recognize the new topics. The EBKA approach will be demonstrated on live data containing fake news on a variety of topics, specifically disaster management such as the COVID-19 pandemic. Due to the disposable novelty nature of fake news, EBKA will be evaluated in two dimensions: classifier performance in terms of accuracy and precision, and timeliness of classifier identifying truly new fake news soon after their appearance in the real world.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
社交媒体补充了传统媒体的即时报道和全球报道。然而,他们也接收和传播大量的错误信息和虚假信息,如假新闻。假新闻巧妙地混合了可证实的事实和令人发指的虚构,旨在吸引读者的注意力,立即产生初步影响,然后很快被遗忘。即使是一次性的新奇事物,假新闻也对选举等真实的世界事件产生了重大影响。对于人类读者和机器学习(ML)分类器来说,区分假新闻和真实的新闻一直是一个挑战,因为它们的结构复杂,用事实来掩盖虚构,并且随着它们的变化而不断地融入最新和最热门的话题。Live Reality项目将通过不断从权威来源导入可靠的、经过验证的事实来跟踪假新闻的演变,并将事实与虚构分开,以捕捉假新闻的行为。与传统的人工标记训练数据生成的机器学习分类器相比,自动实时跟踪功能是一项重大创新,传统的机器学习分类器只能在事实发生很久之后才能发现历史假新闻。鉴于一次性新奇事物的寿命很短(几天或几小时),在行为中捕捉假新闻需要两个维度的重大创新。首先,机器学习分类器必须不断更新,以识别以前从未见过的真正新奇。其次,更新必须足够及时,以便在过期之前捕捉一次性的新奇,例如,在最初传播的几小时内。持续收集实时社交媒体和权威来源将产生新的假新闻和相关的地面真相,这些假新闻和相关的地面真相通过基于证据的知识获取(EBKA)方法进行整合,该方法将来自权威来源的可靠信息添加到一个持续自适应的团队分类器中,以区分可验证的事实和假新闻中的虚构内容。随着新闻主题的发展,假新闻预计会随之而来,EBKA将生成新的子模型并将其集成到实时团队分类器中,以识别新的主题。EBKA方法将在包含各种主题假新闻的实时数据上进行演示,特别是COVID-19大流行等灾害管理。由于假新闻的一次性新奇性,EBKA将从两个方面进行评估:准确度和精确度方面的分类器性能,以及分类器在真实的世界中出现后不久识别真正新的假新闻的及时性。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exploring Generalizability of Fine-Tuned Models for Fake News Detection
- DOI:10.1109/cic56439.2022.00022
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:Abhijit Suprem;Sanjyot Vaidya;C. Pu
- 通讯作者:Abhijit Suprem;Sanjyot Vaidya;C. Pu
Constructive Interpretability with CoLabel: Corroborative Integration, Complementary Features, and Collaborative Learning
- DOI:10.1109/cogmi56440.2022.00021
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Abhijit Suprem;Sanjyot Vaidya;Suma Cherkadi;Purva Singh;J. E. Ferreira;C. Pu
- 通讯作者:Abhijit Suprem;Sanjyot Vaidya;Suma Cherkadi;Purva Singh;J. E. Ferreira;C. Pu
Evolution of Knowledge in Social Media and Their Relationship to an Evolving Real World
- DOI:10.1109/cogmi58952.2023.00013
- 发表时间:2023-11
- 期刊:
- 影响因子:0
- 作者:C. Pu;Abhijit Suprem;A. Musaev;J. Ferreira
- 通讯作者:C. Pu;Abhijit Suprem;A. Musaev;J. Ferreira
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Calton Pu其他文献
Editorial for CollaborateCom 2011 Special Issue
- DOI:
10.1007/s11036-013-0436-0 - 发表时间:
2013-02-28 - 期刊:
- 影响因子:2.000
- 作者:
James Caverlee;Calton Pu;Dimitrios Georgakopoulos;James Joshi - 通讯作者:
James Joshi
A rigorous approach to facilitate and guarantee the correctness of the genetic testing management in human genome information systems
- DOI:
10.1186/1471-2164-12-s4-s13 - 发表时间:
2011-01-01 - 期刊:
- 影响因子:3.700
- 作者:
Luciano V Araújo;Simon Malkowski;Kelly R Braghetto;Maria R Passos-Bueno;Mayana Zatz;Calton Pu;João E Ferreira - 通讯作者:
João E Ferreira
Buffer overflows: attacks and defenses for the vulnerability of the decade
缓冲区溢出:十年来漏洞的攻击与防御
- DOI:
10.1109/discex.2000.821514 - 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
Crispin Cowan;Perry Wagle;Calton Pu;Steve Beattie;Jonathan Walpole - 通讯作者:
Jonathan Walpole
Editorial: Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2012)
- DOI:
10.1007/s11036-014-0532-9 - 发表时间:
2014-09-16 - 期刊:
- 影响因子:2.000
- 作者:
Lakshmish Ramaswamy;Barbara Carminati;James Joshi;Calton Pu - 通讯作者:
Calton Pu
JTangCSB: A Cloud Service Bus for Cloud and Enterprise Application Integration
JTangCSB:用于云和企业应用集成的云服务总线
- DOI:
10.1109/mic.2014.62 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Xingjian Lu;Calton Pu;Zhaohui Wu;Hanwei Chen - 通讯作者:
Hanwei Chen
Calton Pu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Calton Pu', 18)}}的其他基金
RAPID: Tracking and Evaluation of the Coronavirus (COVID-19) Epidemic Propagation by Finding and Maintaining Live Knowledge in Social Media
RAPID:通过在社交媒体中查找和维护实时知识来跟踪和评估冠状病毒(COVID-19)的流行传播
- 批准号:
2026945 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
HNDS-I: Collaborative Research: Developing a Data Platform for Analysis of Nonprofit Organizations
HNDS-I:协作研究:开发用于分析非营利组织的数据平台
- 批准号:
2024320 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
1st US-Japan Workshop Enabling Global Collaborations in Big Data Research; June, 2017, Atlanta, GA
第一届美日研讨会促进大数据研究的全球合作;
- 批准号:
1741034 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
RCN: SAVI: Adaptive Management and Use of Resilient Infrastructures in Smart Cities: Support for Global Collaborative Research on Real-Time Analytics of Heterogeneous Big Data
RCN:SAVI:智慧城市弹性基础设施的适应性管理和使用:支持异构大数据实时分析的全球协作研究
- 批准号:
1550379 - 财政年份:2015
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
EAGER: An Exploratory Study of Multi-Hazard Management through Multi-Source Integration of Physical and Social Sensors
EAGER:通过物理和社会传感器的多源集成进行多危害管理的探索性研究
- 批准号:
1402266 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CSR: Small: Lightning in Clouds: Detection and Characterization of Very Short Bottlenecks
CSR:小:云中闪电:极短瓶颈的检测和表征
- 批准号:
1421561 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
SAVI: EAGER: for Global Research on Applying Information Technology to Support Effective Disaster Management (GRAIT-DM)
SAVI:EAGER:应用信息技术支持有效灾害管理的全球研究 (GRAIT-DM)
- 批准号:
1250260 - 财政年份:2012
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
RAPID: Automating Emergency Data and Metadata Management to Support Effective Short Term and Long Term Disaster Recovery Efforts
RAPID:自动化应急数据和元数据管理,支持有效的短期和长期灾难恢复工作
- 批准号:
1138666 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CSR:Small: Multi-Bottlenecks: What They Are and How to Find Them
CSR:小:多瓶颈:它们是什么以及如何找到它们
- 批准号:
1116451 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
II-NEW: Collaborative Research: Spam Processing, Archiving, and Monitoring Community Facility (SPAM Commons)
II-新:协作研究:垃圾邮件处理、归档和监控社区设施 (SPAM Commons)
- 批准号:
0855180 - 财政年份:2009
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似国自然基金
虚拟集群Live迁移关键技术研究
- 批准号:61170004
- 批准年份:2011
- 资助金额:56.0 万元
- 项目类别:面上项目
相似海外基金
CNS Core: Small: Collaborative: Content-Based Viewport Prediction Framework for Live Virtual Reality Streaming
CNS 核心:小型:协作:用于直播虚拟现实流的基于内容的视口预测框架
- 批准号:
2109982 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Learning 4.0: Live Collaborative Learning in Virtual Reality
学习 4.0:虚拟现实中的实时协作学习
- 批准号:
69577 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Study
CNS Core: Small: Collaborative: Content-Based Viewport Prediction Framework for Live Virtual Reality Streaming
CNS 核心:小型:协作:用于直播虚拟现实流的基于内容的视口预测框架
- 批准号:
1910085 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CNS Core: Small: Collaborative: Content-Based Viewport Prediction Framework for Live Virtual Reality Streaming
CNS 核心:小型:协作:用于直播虚拟现实流的基于内容的视口预测框架
- 批准号:
1909185 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CNS Core: Small: Collaborative: Content-Based Viewport Prediction Framework for Live Virtual Reality Streaming
CNS 核心:小型:协作:用于直播虚拟现实流的基于内容的视口预测框架
- 批准号:
1909172 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Cinema Unframed: exploring the screen in virtual reality, through live installation and mobile app
Cinema Unframed:通过现场安装和移动应用程序探索虚拟现实中的屏幕
- 批准号:
AH/R004854/1 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Research Grant
Six Degrees-of-freedom Virtual Reality for Live Events
适用于现场活动的六自由度虚拟现实
- 批准号:
514599-2017 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Engage Grants Program
Gamecast TV - THE AVM LIVE Mixed reality platform
Gamecast TV - THE AVM LIVE 混合现实平台
- 批准号:
720601 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
GRD Development of Prototype
ALIVE – Live Action Lightfields for Immersive Virtual Reality Experiences
ALIVE — 用于沉浸式虚拟现实体验的真人光场
- 批准号:
102686 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Collaborative R&D
Live Augmented Reality Training Environments (LARTE)
实时增强现实培训环境 (LARTE)
- 批准号:
101509 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Collaborative R&D