Data Coding, Analysis, Archiving, and Sharing for Open Collaboration: From OpenSHAPA to Open Data Sharing
开放协作的数据编码、分析、归档和共享:从 OpenSHAPA 到开放数据共享
基本信息
- 批准号:1139702
- 负责人:
- 金额:$ 4.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-15 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Researchers now have access to richer and more detailed behavioral data than ever before. For example, when studying how children learn to walk, researchers can collect eye-tracking data from miniature head-mounted cameras recording the infant's eye movements and field of view, making it possible to see exactly where the child looks while navigating through the environment. Simultaneously, researchers can collect high-speed motion-tracking data detailing the trajectories of the child's limb movements and video data about the child's path relative to caregivers and obstacles, interactions with people, objects, and surfaces, and affective responses while walking, falling, and interacting. Despite the widespread availability of video and other recording technologies, behavioral researchers typically settle for analyzing only one variable in one stream of data, rather than seeking relations among multiple variables across multiple data streams. Powerful data analysis tools and sophisticated data management practices are needed to integrate different kinds of data and relate them to each other tools and practices that few researchers have. In addition, researchers usually work in isolation, seldom sharing data that might illuminate others' research. Without richer analyses and data sharing, theoretical progress in developmental psychology and other fields of behavioral science is hampered. The purpose of this workshop is to delve into the conceptual, technical, and management issues that, when resolved, will allow researchers to perform richer analyses across large, shared, data sets. The workshop will focus in part on the future development of an emerging open-source software tool, OpenSHAPA, and will explore how OpenSHAPA might be extended to encompass new data exploration and visualization tools and promote data management and data sharing. Twenty-two researchers will participate in the workshop, representing the fields of cognitive, perceptual, social, language, and motor development, human-computer interaction, visual analytics, computer science, eResearch, cognitive science, and human factors. Collectively, the invited researchers have experience with different aspects of the problem of exploring rich behavioral data, such as performing massive data visualization, innovative data analyses, integrating multiple data streams, performing custodianship of shared data sets, and creating eResearch communities and data management tools.The outcomes from the workshop will help to improve the quality of behavioral science. First, findings from the workshop will have an immediate impact on further development of the OpenSHAPA tool, where development is shared across a burgeoning community of users. Possible directions are changes to the architecture to prepare for expansion of data management and data sharing capabilities, building links to existing software, creating libraries of scripts for users to manage data in standardized ways, creating web-based user guides and best practices, expanding user forums, and providing efficient technical support. Research community members can freely adopt OpenSHAPA, expand their current use of it, or build bridges between it and other open source tools, and will bring new users into the community of current users and developers. Second, the richer data analysis that results should support richer theoretical insights. Better data management practices will support more reliable and replicable research, and will better preserve data for future use within and across laboratories. A community of open data sharing practices will lead to greater transparency and efficiency in research and teaching by allowing researchers to inspect each other's data sets and analyses, thereby reducing puzzling failures to replicate, generating new hypotheses, and exposing students to original footage of tasks and findings.
研究人员现在可以获得比以往任何时候都更丰富,更详细的行为数据。例如,在研究儿童如何学习走路时,研究人员可以从记录婴儿眼球运动和视野的微型头戴式摄像机中收集眼球跟踪数据,从而可以准确地看到儿童在环境中导航时所看的地方。同时,研究人员可以收集高速运动跟踪数据,详细描述儿童肢体运动的轨迹,以及儿童相对于看护者和障碍物的路径,与人,物体和表面的互动,以及行走,跌倒和互动时的情感反应的视频数据。尽管视频和其他记录技术的广泛应用,行为研究人员通常只满足于分析一个数据流中的一个变量,而不是在多个数据流中寻找多个变量之间的关系。需要强大的数据分析工具和复杂的数据管理实践来整合不同类型的数据,并将它们与很少有研究人员拥有的工具和实践联系起来。此外,研究人员通常孤立地工作,很少分享可能照亮他人研究的数据。如果没有更丰富的分析和数据共享,发展心理学和行为科学其他领域的理论进展就会受到阻碍。本次研讨会的目的是深入研究概念,技术和管理问题,这些问题一旦得到解决,将使研究人员能够在大型共享数据集上进行更丰富的分析。研讨会将部分侧重于一个新兴的开放源码软件工具OpenSHAPA的未来开发,并将探讨如何扩大OpenSHAPA,使其包括新的数据探索和可视化工具,并促进数据管理和数据共享。22名研究人员将参加研讨会,代表认知,感知,社会,语言和运动发展,人机交互,视觉分析,计算机科学,电子研究,认知科学和人为因素等领域。作为一个整体,受邀的研究人员在探索丰富的行为数据问题的不同方面都有丰富的经验,例如执行海量数据可视化,创新的数据分析,整合多个数据流,执行共享数据集的保管,以及创建eResearch社区和数据管理工具。研讨会的成果将有助于提高行为科学的质量。首先,研讨会的结果将对OpenSHAPA工具的进一步开发产生直接影响,其中开发工作将在迅速发展的用户社区中共享。可能的方向是改变架构,为扩大数据管理和数据共享能力做准备,建立与现有软件的链接,为用户建立以标准化方式管理数据的脚本库,创建网上用户指南和最佳做法,扩大用户论坛,以及提供有效的技术支持。研究社区成员可以自由采用OpenSHAPA,扩展他们目前对它的使用,或者在它和其他开源工具之间建立桥梁,并将新用户带入现有用户和开发人员的社区。其次,更丰富的数据分析结果应该支持更丰富的理论见解。更好的数据管理实践将支持更可靠和可复制的研究,并将更好地保存数据,供未来在实验室内部和实验室之间使用。一个开放的数据共享实践社区将通过允许研究人员检查彼此的数据集和分析来提高研究和教学的透明度和效率,从而减少令人困惑的复制失败,产生新的假设,并让学生接触到任务和发现的原始片段。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karen Adolph其他文献
Karen Adolph的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karen Adolph', 18)}}的其他基金
NSF/SBE-BSF: Neural patterns underlying the development of planning in action production and anticipation in action perception
NSF/SBE-BSF:行动产生中的规划和行动感知中的预期发展的神经模式
- 批准号:
1627993 - 财政年份:2016
- 资助金额:
$ 4.06万 - 项目类别:
Standard Grant
Databrary: An open video-based data-sharing system for developmental science
Databrary:用于发展科学的基于视频的开放数据共享系统
- 批准号:
1238599 - 财政年份:2012
- 资助金额:
$ 4.06万 - 项目类别:
Continuing Grant
相似国自然基金
long non-coding RNA(lncRNA)-activatedby TGF-β(lncRNA-ATB)通过成纤维细胞影响糖尿病创面愈合的机制研究
- 批准号:LQ23H150003
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
Non-coding RNA在RAS抑制剂治疗IgA肾病疗效差异中的作用及机制研究
- 批准号:81770709
- 批准年份:2017
- 资助金额:52.0 万元
- 项目类别:面上项目
水稻细菌性褐条病菌致病相关non-coding RNAs的鉴定、功能及调控机制研究
- 批准号:31571971
- 批准年份:2015
- 资助金额:60.0 万元
- 项目类别:面上项目
Long non-coding RNA MEG3分子对胶质瘤干细胞调控作用的研究
- 批准号:81402438
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
调控家蚕发育非编码RNA(non-coding RNA, ncRNA)的功能解析
- 批准号:31172158
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
保守非基因序列(CNGs),非编码RNA序列(Non-coding RNAs)和内含子(Introns)的信息论研究和功能预测
- 批准号:90403010
- 批准年份:2004
- 资助金额:25.0 万元
- 项目类别:重大研究计划
相似海外基金
Large-scale analysis of archived sequencing data in public database for functional analysis of long non-coding RNAs
对公共数据库中存档的测序数据进行大规模分析,以进行长非编码 RNA 的功能分析
- 批准号:
20K12041 - 财政年份:2020
- 资助金额:
$ 4.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improvement of data compression and coding efficiency using non-harmonic analysis
使用非谐波分析提高数据压缩和编码效率
- 批准号:
15K12062 - 财政年份:2015
- 资助金额:
$ 4.06万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Topology of Neural Coding in Recurrent Networks: Theory and Data Analysis
循环网络中神经编码的拓扑:理论与数据分析
- 批准号:
1122519 - 财政年份:2011
- 资助金额:
$ 4.06万 - 项目类别:
Standard Grant
Efficient Scalable Analysis and Coding of Hypervolume Data
超容量数据的高效可扩展分析和编码
- 批准号:
175165638 - 财政年份:2010
- 资助金额:
$ 4.06万 - 项目类别:
Research Grants
Conference Proposal: Statistical Modeling and Data Analysis for Neural Coding
会议提案:神经编码的统计建模和数据分析
- 批准号:
0934052 - 财政年份:2009
- 资助金额:
$ 4.06万 - 项目类别:
Standard Grant
CAREER: Coding Theoretic Problems in Genetic Data Acquisition, Modeling and Analysis
职业:遗传数据采集、建模和分析中的编码理论问题
- 批准号:
0809895 - 财政年份:2007
- 资助金额:
$ 4.06万 - 项目类别:
Continuing Grant
CAREER: Coding Theoretic Problems in Genetic Data Acquisition, Modeling and Analysis
职业:遗传数据采集、建模和分析中的编码理论问题
- 批准号:
0644427 - 财政年份:2007
- 资助金额:
$ 4.06万 - 项目类别:
Continuing Grant
Analysis of Coding Tree Characteristics and its Applications to Data Compression and Cryptosystems
编码树特性分析及其在数据压缩和密码系统中的应用
- 批准号:
17360174 - 财政年份:2005
- 资助金额:
$ 4.06万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Granular computing and sparse coding for the modeling, analysis, and classification of high-dimensional biomedical data
用于高维生物医学数据建模、分析和分类的粒度计算和稀疏编码
- 批准号:
257685-2002 - 财政年份:2005
- 资助金额:
$ 4.06万 - 项目类别:
Strategic Projects - Group
Granular computing and sparse coding for the modeling, analysis, and classification of high-dimensional biomedical data
用于高维生物医学数据建模、分析和分类的粒度计算和稀疏编码
- 批准号:
257685-2002 - 财政年份:2004
- 资助金额:
$ 4.06万 - 项目类别:
Strategic Projects - Group