Efficient Scalable Analysis and Coding of Hypervolume Data

超容量数据的高效可扩展分析和编码

基本信息

项目摘要

Volumetric data records with three and more dimensions appear in many sectors of natural and engineering science. Dynamic 3-D volumes from magnetic resonance tomography (MRT) and computed tomography (CT) become more and more important in medical image processing. So far, this project focused on improving the analysis of high dimensional (hyper-) volume data by using compensated wavelet lifting. The goal is to obtain an improved scalable representation and feasible compensation methods were developed therefore. By their incorporation directly into the lifting structure, the structures and characteristics of the wavelet coefficients are modified fundamentally so existing methods for coding cannot operate in an optimum way anymore.In this application, novel more efficient methods for scalable coding are developed. Therefor, graph-based approaches are used. The usage of one specific coder is set aside to obtain a higher coding efficiency. Within the scope of the present research of the applicant and the literature, considerable coding gains were achieved by combining hybrid coding and specialized residual coding methods for obtaining scalable lossless coding of video data. Thus, the combination of wavelet-based and hybrid approaches is addressed to enable a more flexible Decomposition as well as a higher coding efficiency for (hyper-) volume data.
三维或三维以上的体数据记录出现在自然科学和工程科学的许多领域。磁共振断层扫描(MRT)和计算机断层扫描(CT)的动态3D体积在医学图像处理中变得越来越重要。到目前为止,该项目的重点是通过使用补偿小波提升来改善高维(超)体数据的分析。目标是获得一个改进的可扩展表示和可行的补偿方法,因此开发。通过将小波系数直接引入到提升结构中,从根本上改变了小波系数的结构和特性,使得现有的编码方法不再能够以最优的方式进行编码,从而开发了一种新的更有效的可伸缩编码方法。因此,使用基于图的方法。一个特定编码器的使用被搁置以获得更高的编码效率。在申请人和文献的当前研究的范围内,通过组合混合编码和专用残差编码方法来获得视频数据的可伸缩无损编码,实现了相当大的编码增益。因此,基于小波和混合方法的组合被解决,以实现更灵活的分解以及更高的编码效率(超)体积数据。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient lossless coding of highpass bands from block-based motion compensated wavelet lifting using JPEG 2000
使用 JPEG 2000 通过基于块的运动补偿小波提升对高通频带进行高效无损编码
Compression of Dynamic Medical CT Data Using Motion Compensated Wavelet Lifting with Denoised Update
使用运动补偿小波提升和去噪更新来压缩动态医学 CT 数据
  • DOI:
    10.1109/pcs.2018.8456262
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Lanz;J. Seiler;K. Jaskolka;A. Kaup
  • 通讯作者:
    A. Kaup
Analysis of displacement compensation methods for wavelet lifting of medical 3-D thorax CT volume data
医用3D胸部CT体数据小波提升位移补偿方法分析
Improving block-based compensated wavelet lifting by reconstructing unconnected pixels
通过重建未连接的像素来改进基于块的补偿小波提升
Analysis of mesh-based motion compensation in wavelet lifting of dynamical 3-D+t CT data
动态 3-D t CT 数据小波提升中基于网格的运动补偿分析
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. André Kaup其他文献

Professor Dr.-Ing. André Kaup的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. André Kaup', 18)}}的其他基金

Video Coding for Deep Learning-Based Machine-to-Machine Communication
基于深度学习的机器对机器通信的视频编码
  • 批准号:
    426084215
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Projection-Based Ultra Wide-Angle and 360° Video Coding
基于投影的超广角和 360° 视频编码
  • 批准号:
    418866191
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Model-based mesh-to-grid image resampling with application to robust object detection, recognition and tracking
基于模型的网格到网格图像重采样,应用于稳健的对象检测、识别和跟踪
  • 批准号:
    402837983
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Reconstruction of Irregularly Sampled Image Signals Using Sparse Representations
使用稀疏表示重建不规则采样图像信号
  • 批准号:
    225074913
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Extrapolation mehrdimensionaler diskreter Signale und deren Anwendung in der Bild- und Videokommunikation
多维离散信号外推及其在图像视频通信中的应用
  • 批准号:
    5446991
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Camera Array for Hyperspectral Video Imaging Using Cross-Spectral Multi-View Fusion
使用跨光谱多视图融合进行高光谱视频成像的相机阵列
  • 批准号:
    491814627
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Advanced Image Sensing Using Arbitrarily Shaped Pixels and Neural Network Reconstruction
使用任意形状的像素和神经网络重建的高级图像传感
  • 批准号:
    516695992
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Learning-Based Wavelet Video Coding Using Deep Adaptive Lifting
使用深度自适应提升的基于学习的小波视频编码
  • 批准号:
    461649014
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Losless and lossy compression of screen-content data using machine learning
使用机器学习对屏幕内容数据进行无损和有损压缩
  • 批准号:
    438221930
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2415562
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Scalable Bayesian regression: Analytical and numerical tools for efficient Bayesian analysis in the large data regime
可扩展贝叶斯回归:在大数据领域进行高效贝叶斯分析的分析和数值工具
  • 批准号:
    2311354
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: Scalable Performance and Accuracy analysis for Distributed and Extreme-scale systems (SPADE)
协作研究:框架:分布式和超大规模系统的可扩展性能和准确性分析 (SPADE)
  • 批准号:
    2311707
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: Scalable Performance and Accuracy analysis for Distributed and Extreme-scale systems (SPADE)
协作研究:框架:分布式和超大规模系统的可扩展性能和准确性分析 (SPADE)
  • 批准号:
    2311708
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2341725
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
FMiTF: Track-2 : Rigorous and Scalable Formal Floating-Point Error Analysis from LLVM
FMiTF:Track-2:来自 LLVM 的严格且可扩展的形式浮​​点误差分析
  • 批准号:
    2319507
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
A scalable integrated multi-modal single cell analysis framework for gene regulatory and cell-cell interaction networks
用于基因调控和细胞间相互作用网络的可扩展集成多模式单细胞分析框架
  • 批准号:
    2233887
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Frameworks: Scalable Performance and Accuracy analysis for Distributed and Extreme-scale systems (SPADE)
协作研究:框架:分布式和超大规模系统的可扩展性能和准确性分析 (SPADE)
  • 批准号:
    2311709
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Scalable and Precise Program Analysis for Modern Software Systems
现代软件系统的可扩展且精确的程序分析
  • 批准号:
    RGPIN-2017-05070
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2212508
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了