Collaborative Research: Converging on a Physical Basis for Rate and State Friction through Nano-to-Macro-Scale Friction and Adhesion Experiments on Geological Materials

合作研究:通过地质材料的纳米到宏观摩擦和粘附实验,汇聚速率和状态摩擦的物理基础

基本信息

  • 批准号:
    1141882
  • 负责人:
  • 金额:
    $ 38.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2015-01-31
  • 项目状态:
    已结题

项目摘要

Significance and importance of the project. Nucleation of earthquakes on tectonic-scale faults in the Earth?s crust is controlled, remarkably, by frictional processes that originate at micro- and nano-scale contacts between fault surfaces. The earthquake cycle is typically studied via computer models incorporating any of several empirical friction ?laws?. Such models reproduce a rich variety of observed earthquake phenomena, despite the fact that the friction laws upon which they are founded lack a physical basis. Stated simply, the identities of the physical mechanisms that occur at nanoscale contacts between the fault materials are unknown. Without a sound physical basis, the researchers are severely limited in our abilities to reliably extrapolate existing friction laws from laboratory measurements to natural systems, and ultimately to reliably predict approaching earthquakes. That the friction laws lack a physical basis largely reflects the difficulty of isolating and studying processes that occur at nanoscale fault contacts. In this transformative study, the researchers will employ cutting-edge methods of materials science, principally atomic force microscopy, nanoindentation, and microindentation, to isolate the frictional mechanisms that occur in experiments on rocks and on faults in nature. Using these methods, the researchers will isolate the frictional mechanisms occurring at a single contact on a fault surface, rather than measure the integrated behaviors of many contacts at once (as in laboratory experiments on rocks). The researchers aim to use this ?bottom-up? approach to establish a robust, physics-based foundation for existing friction laws and to proscribe their limits of applicability. The research may ultimately allow them to determine whether they are able to detect accelerating creep on faults days to hours prior to an earthquake, which would save many lives and mitigate damages to human infrastructures. From the perspective of the scientific disciplines of solid mechanics and materials science, insights gained by identifying and connecting frictional behavior across many length scales have potential application well beyond geophysics, for example, in many engineered systems, including silicon-based micromechanical devices. Technical description. The overarching goals of the proposed research are to isolate and identify the physical mechanisms that occur at the nanoscale asperity contacts which comprise macroscopic frictional interfaces. More specifically, the researchers seek to answer arguably the most fundamental question regarding existing rate- and state-variable friction laws as they pertain to the earthquake cycle ? What is the physical mechanism(s) that gives rise to the observed time dependence of friction? The frictional stability of an interface ? i.e., whether friction decreases or increases with increasing slip rate, and therefore whether an earthquake can nucleate or not, respectively ? depends critically on the magnitude of the time dependence of friction, otherwise known as frictional ?ageing?. In our previous work, they established that a canonical observation from friction experiments on rocks and other engineering materials ? that friction increases linearly with the log of the time of stationary contact ? can be amply explained quantitatively by either 1) creep of contacts at sufficiently high contact stresses (Goldsby et al., J. Mater. Res., 2004) or 2) increased adhesive strength of contacts (stronger chemical bonding) in the absence of contact creep (Li et al., Nature, 2012). Explanation 2 is based on our atomic force microscopy (AFM) friction tests on single nanoscale silica-silica contacts (Li et al., Nature, 2012). Intriguingly, the magnitude of ageing in the AFM tests is far larger than in laboratory friction experiments on rocks, by up to a factor of 100. This discrepancy is readily explained by a contact mechanics model allowing for inhomogeneous slip on a multi-asperity interface (Li et al., Nature, 2012). In addition, microindentation experiments and complementary friction experiments on quartz at low (2.2) pH and neutral (7) pH reveal no difference in indentation size between tests at either pH, no ageing in rock friction tests at pH 2.2, but strong ageing at pH 7. These observations strongly suggest that ageing is due to time-dependent adhesion rather than contact creep, a conclusion that runs counter to the prevailing wisdom. However, further work is required to determine if there are conditions where both mechanisms can occur. In this new work, more sophisticated experiments will allow us to discriminate between plastic deformation and adhesion effects on frictional ageing. The researchers will employ AFM, interfacial force microscopy, nanoindentation, microindentation, and rock friction experiments to investigate the influences of water, temperature, and chemical environment (namely, pH) on asperity creep and adhesion. The researchers will also employ sophisticated in situ nanoindentation in the transmission electron microscope to study, in real time, plastic deformation and changes in chemical bonding using high resolution imaging, electron diffraction, electron energy loss spectroscopy, and energy dispersive spectroscopy.
项目的意义和重要性。 地球构造尺度断层上的地震成核?值得注意的是,地球的地壳是由断层表面之间的微观和纳米级接触产生的摩擦过程控制的。地震周期通常是通过计算机模型结合任何几个经验摩擦?法律?这些模型再现了丰富多样的观测到的地震现象,尽管它们所依据的摩擦定律缺乏物理基础。简单地说,在断层材料之间的纳米级接触处发生的物理机制的身份是未知的。 由于没有坚实的物理基础,研究人员将现有的摩擦定律从实验室测量结果可靠地推断到自然系统的能力受到严重限制,并最终可靠地预测即将发生的地震。摩擦定律缺乏物理基础,这在很大程度上反映了分离和研究发生在纳米级断层接触处的过程的困难。 在这项变革性的研究中,研究人员将采用材料科学的尖端方法,主要是原子力显微镜,纳米压痕和微压痕,以隔离在岩石和自然界断层实验中发生的摩擦机制。使用这些方法,研究人员将分离出断层表面上单个接触处发生的摩擦机制,而不是一次测量许多接触的综合行为(如在岩石上的实验室实验)。 研究人员希望利用这一?自下而上这是一种为现有的摩擦定律建立一个坚实的、基于物理的基础,并禁止其适用性限制的方法。这项研究可能最终使他们能够确定他们是否能够在地震前几天到几小时检测到断层的加速蠕变,这将挽救许多生命并减轻对人类基础设施的破坏。从固体力学和材料科学学科的角度来看,通过识别和连接许多长度尺度上的摩擦行为所获得的见解具有远远超出电子物理学的潜在应用,例如,在许多工程系统中,包括硅基微机械设备。技术说明。拟议的研究的总体目标是隔离和识别的物理机制,发生在纳米级粗糙接触,包括宏观摩擦界面。 更具体地说,研究人员试图回答可以说是最基本的问题,关于现有的速率和状态变量摩擦定律,因为它们涉及到地震周期?产生所观察到的摩擦力随时间变化的物理机制是什么? 界面的摩擦稳定性?也就是说,摩擦力是否随滑动速率的增加而减小或增大,从而地震是否能成核?关键取决于摩擦力对时间的依赖性,也就是摩擦力?衰老? 在我们以前的工作中,他们建立了一个典型的观察,从摩擦实验对岩石和其他工程材料?摩擦力与静止接触时间的对数成线性关系可以通过以下两种方式充分地定量解释:1)在足够高的接触应力下接触的蠕变(Goldsby等人,杰·板牙。结果:2004)或2)在没有接触蠕变的情况下增加接触的粘合强度(更强的化学结合)(Li等人,Nature,2012)。解释2基于我们对单个纳米级二氧化硅-二氧化硅接触的原子力显微镜(AFM)摩擦测试(Li等人,Nature,2012)。有趣的是,原子力显微镜测试中的老化程度远远大于实验室岩石摩擦实验中的老化程度,高达100倍。这种差异很容易通过接触力学模型来解释,该模型允许多粗糙界面上的不均匀滑动(Li等人,Nature,2012)。此外,在低pH值(2.2)和中性(7)pH值下对石英进行的微压痕实验和补充摩擦实验显示,在任一pH值下的测试之间的压痕尺寸没有差异,在pH值2.2下的岩石摩擦测试中没有老化,但在pH值7下有强烈的老化。 这些观察结果强烈表明,老化是由于时间依赖性的粘附力,而不是接触蠕变,这一结论与流行的智慧背道而驰。然而,需要进一步的工作来确定是否存在两种机制都可能发生的条件。在这项新工作中,更复杂的实验将使我们能够区分塑性变形和摩擦老化的粘附效应。研究人员将采用AFM,界面力显微镜,纳米压痕,微压痕和岩石摩擦实验,以研究水,温度和化学环境(即pH值)对粗糙蠕变和粘附的影响。研究人员还将采用先进的原位纳米压痕在透射电子显微镜研究,在真实的时间,塑性变形和化学键合的变化,使用高分辨率成像,电子衍射,电子能量损失谱,和能量色散谱。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Goldsby其他文献

太陽風プロトンの月面散乱における散乱角依存性
月球表面太阳风质子散射的散射角依赖性
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Arito Sakaguchi;Frederick Chester;Daniel Curewitz;Olivier Fabbri;David Goldsby;Gaku Kimura;Chun-Feng Li;Yuka Masaki;Elizabeth Screnton;Akito Tsutsumi;Kohtaro Ujiie;Asuka Yamaguchi;上村洸太,齋藤義文,西野真木,横田勝一郎,浅村和史,綱川秀夫
  • 通讯作者:
    上村洸太,齋藤義文,西野真木,横田勝一郎,浅村和史,綱川秀夫

David Goldsby的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Goldsby', 18)}}的其他基金

Collaborative Research: Experiments and Simulations at the Nexus of Geophysics, Chemistry, Materials Science and Mechanics to Determine the Physical Basis for Rate-State Friction
合作研究:结合地球物理学、化学、材料科学和力学来确定速率状态摩擦的物理基础的实验和模拟
  • 批准号:
    1951462
  • 财政年份:
    2020
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Continuing Grant
Collaborative Research: Experimental Determination of the Influence of Water on the Strength of Rocks
合作研究:水对岩石强度影响的实验测定
  • 批准号:
    2020880
  • 财政年份:
    2020
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Transformation plasticity as a transient creep mechanism in Earth's crust and mantle
合作研究:作为地壳和地幔瞬态蠕变机制的相变塑性
  • 批准号:
    2023058
  • 财政年份:
    2020
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Seismic Attenuation and Anelasticity in the Upper Mantle: the Effect of Continuous Far-Field Dislocation Creep
合作研究:上地幔的地震衰减和滞弹性:连续远场位错蠕变的影响
  • 批准号:
    1855461
  • 财政年份:
    2019
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Constraints From Fault Roughness on the Scale-dependent Strength of Rocks
合作研究:断层粗糙度对岩石尺度相关强度的约束
  • 批准号:
    1624504
  • 财政年份:
    2016
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Continuing Grant
Collaborative Research: A Multidisciplinary Study to Determine the Fundamental Mechanisms of Rock Friction through Coordinated Experiments and Simulations
协作研究:通过协调实验和模拟确定岩石摩擦基本机制的多学科研究
  • 批准号:
    1550112
  • 财政年份:
    2016
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Continuing Grant
Collaborative Research: Converging on a Physical Basis for Rate and State Friction through Nano-to-Macro-Scale Friction and Adhesion Experiments on Geological Materials
合作研究:通过地质材料的纳米到宏观摩擦和粘附实验,汇聚速率和状态摩擦的物理基础
  • 批准号:
    1464714
  • 财政年份:
    2014
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Continuing Grant
Collaborative Research: Carbonation of Serpentinite in the San Andreas Fault: How Fluid-rock Interactions Impact Aseismic Creep
合作研究:圣安德烈亚斯断层中蛇纹岩的碳化:流体-岩石相互作用如何影响抗震蠕变
  • 批准号:
    1502472
  • 财政年份:
    2014
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Carbonation of Serpentinite in the San Andreas Fault: How Fluid-rock Interactions Impact Aseismic Creep
合作研究:圣安德烈亚斯断层中蛇纹岩的碳化:流体-岩石相互作用如何影响抗震蠕变
  • 批准号:
    1219908
  • 财政年份:
    2012
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Laboratory Experiments to Understand Dynamic Slip Weakening in Rocks and Analog Materials
合作研究:了解岩石和模拟材料动态滑移弱化的实验室实验
  • 批准号:
    0810059
  • 财政年份:
    2008
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Converging Design Methodology: Multi-objective Optimization of Resilient Structural Spines
合作研究:融合设计方法:弹性结构脊柱的多目标优化
  • 批准号:
    2120684
  • 财政年份:
    2021
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Converging Design Methodology: Multi-objective Optimization of Resilient Structural Spines
合作研究:融合设计方法:弹性结构脊柱的多目标优化
  • 批准号:
    2120683
  • 财政年份:
    2021
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Converging Design Methodology: Multi-objective Optimization of Resilient Structural Spines
合作研究:融合设计方法:弹性结构脊柱的多目标优化
  • 批准号:
    2120692
  • 财政年份:
    2021
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Converging COVID-19, environment, health, and equity
合作研究:融合 COVID-19、环境、健康和公平
  • 批准号:
    2037862
  • 财政年份:
    2020
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Converging COVID-19, environment, health, and equity
合作研究:融合 COVID-19、环境、健康和公平
  • 批准号:
    2037834
  • 财政年份:
    2020
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Converging Genomics, Phenomics, and Environments Using Interpretable Machine Learning Models
协作研究:使用可解释的机器学习模型融合基因组学、表型组学和环境
  • 批准号:
    1940062
  • 财政年份:
    2019
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Continuing Grant
Collaborative Research: Converging Genomics, Phenomics, and Environments Using Interpretable Machine Learning Models
协作研究:使用可解释的机器学习模型融合基因组学、表型组学和环境
  • 批准号:
    1940330
  • 财政年份:
    2019
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Continuing Grant
Collaborative Research: Converging Genomics, Phenomics, and Environments Using Interpretable Machine Learning Models
协作研究:使用可解释的机器学习模型融合基因组学、表型组学和环境
  • 批准号:
    1940059
  • 财政年份:
    2019
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Continuing Grant
Collaborative Research: Converging Genomics, Phenomics, and Environments Using Interpretable Machine Learning Models
协作研究:使用可解释的机器学习模型融合基因组学、表型组学和环境
  • 批准号:
    1939945
  • 财政年份:
    2019
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Continuing Grant
Collaborative Research: Converging on a Physical Basis for Rate and State Friction through Nano-to-Macro-Scale Friction and Adhesion Experiments on Geological Materials
合作研究:通过地质材料的纳米到宏观摩擦和粘附实验,汇聚速率和状态摩擦的物理基础
  • 批准号:
    1464714
  • 财政年份:
    2014
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了