Collaborative Research: Transformation plasticity as a transient creep mechanism in Earth's crust and mantle

合作研究:作为地壳和地幔瞬态蠕变机制的相变塑性

基本信息

  • 批准号:
    2023058
  • 负责人:
  • 金额:
    $ 7.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-15 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

The minerals that comprise Earth’s crust and mantle undergo phase transformations. Changes in their crystal structure occur in response to changes in temperature and pressure. With increasing pressure, olivine — the main constituent of the upper mantle — transforms into denser minerals; much like graphite transforms into diamond. As one mineral transforms into another, crystal defects, known as dislocations, are produced. Dislocations allow crystals to deform plastically, i.e., permanently. These dislocations can cause temporary weakening that speeds up crust and mantle flows. Transformation-induced weakening — "transformation plasticity" — may impact the mantle flows driving plate tectonics. It may also provide an explanation for the earthquakes occurring at great depths in the mantle. These deep earthquakes are still poorly understood. Despite its importance, transformation plasticity has seldom been observed in the laboratory. This is because it involves complex processes, difficult to quantify by conventional methods. Here, The researchers conduct experiments at the extreme pressures and temperature prevailing in the mantle. They study the plasticity of fayalite, olivine Fe-rich end member, and quartz which is an important constituent of the continental crust. They use a state-of-the-art high-pressure deformation device set up at a national synchrotron facility. There, powerful X-rays allow imaging the minerals and analyzing their properties during their transformations. The multidisciplinary project, at the intersection of geophysics, materials science, and crystallography, aims to expand the understanding of Earth’s interior dynamics. It supports the professional development of an early career scientist. It also provides training for one graduate and several undergraduate students.Transformation plasticity may play a central role in: 1) mantle decoupling and the development of layered convection; 2) slab ponding in Earth’s mantle transition zone; 3) shear zone nucleation during orogenesis; 4) mantle plume upwelling; and 5) the nucleation of deep-focus earthquakes. However, few studies have examined transformation plasticity in major rock-forming minerals. This is because of the difficulty to quantify complex transient behaviors at high temperatures (1000 K) and pressures ( 1 GPa). Here, the team explores the quartz-coesite and olivine-spinel phase transformations — under hydrostatic and non-hydrostatic conditions — using a Deformation-DIA (D-DIA) apparatus located at the Advanced Photon Source (APS) at Argonne National Laboratory. This experimental setup is uniquely suited to examining transformation-related phenomena in situ at mantle pressures and temperatures. Stresses and transformation kinetics are quantified via energy-dispersive X-ray diffraction. Axial and volume strains are measured using X-ray radiography. Constitutive laws describing transformation plasticity are derived, benchmarked against experimental data, and extrapolated to Earth conditions. Run product microstructures are also investigated in detail — using high-resolution electron backscatter diffraction — to interrogate the physical processes responsible for transformation-induced weakening. Ultimately, the team seeks to determine the importance of transformation plasticity in Earth’s crust and mantle.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
构成地壳和地幔的矿物经历了相变。它们的晶体结构会随着温度和压力的变化而发生变化。随着压力的增加,橄榄石--上地幔的主要成分--会转化为更致密的矿物;就像石墨转化为钻石一样。当一种矿物转变成另一种矿物时,就会产生晶体缺陷,称为位错。位错使晶体发生塑性变形,即永久变形。这些位错可能导致暂时的减弱,从而加速地壳和地幔的流动。相变引起的弱化--“相变塑性”--可能影响驱动板块构造的地幔流动。它还可能为地幔深处发生的地震提供解释。人们对这些深源地震仍知之甚少。尽管相变塑性很重要,但在实验室中很少观察到它的存在。这是因为它涉及复杂的过程,很难用传统方法来量化。在这里,研究人员在地幔中普遍存在的极端压力和温度下进行实验。他们研究了铁闪石、橄榄石富铁端元和作为大陆地壳重要组成部分的石英的可塑性。他们使用最先进的高压变形装置,安装在国家同步加速器设施中。在那里,强大的X射线可以为矿物成像,并在它们转变过程中分析它们的性质。这个多学科项目是地球物理学、材料科学和结晶学的交汇点,旨在扩大对地球内部动力学的理解。它支持早期职业科学家的专业发展。它还为一名研究生和几名本科生提供培训。转换塑性可能在以下方面发挥核心作用:1)地幔去耦合和层状对流的发展;2)地球地幔过渡带中的板块堆积;3)造山过程中剪切带的成核;4)地幔上涌;5)深源地震的成核。然而,很少有研究考察主要造岩矿物的转化可塑性。这是因为很难量化高温(1000K)和高压(1 Gpa)下的复杂瞬变行为。在这里,该团队使用位于阿贡国家实验室高级光子源(APS)的形变-DIA(D-DIA)设备,探索了石英-柯石英和橄榄石-尖晶石的相变-在流体静力和非流体静力条件下。这种实验装置特别适合于在地幔压力和温度下就地考察与转变相关的现象。用能量色散X射线衍射法对应力和相变动力学进行了量化。轴向应变和体积应变是用X射线照相法测量的。推导了描述相变塑性的本构定律,以实验数据为基准,并根据地球条件进行了外推。RUN产物的微观结构也被详细研究--使用高分辨率的电子背散射衍射--以询问导致相变诱导弱化的物理过程。最终,该团队寻求确定地壳和地幔中变形可塑性的重要性。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Goldsby其他文献

太陽風プロトンの月面散乱における散乱角依存性
月球表面太阳风质子散射的散射角依赖性
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Arito Sakaguchi;Frederick Chester;Daniel Curewitz;Olivier Fabbri;David Goldsby;Gaku Kimura;Chun-Feng Li;Yuka Masaki;Elizabeth Screnton;Akito Tsutsumi;Kohtaro Ujiie;Asuka Yamaguchi;上村洸太,齋藤義文,西野真木,横田勝一郎,浅村和史,綱川秀夫
  • 通讯作者:
    上村洸太,齋藤義文,西野真木,横田勝一郎,浅村和史,綱川秀夫

David Goldsby的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Goldsby', 18)}}的其他基金

Collaborative Research: Experiments and Simulations at the Nexus of Geophysics, Chemistry, Materials Science and Mechanics to Determine the Physical Basis for Rate-State Friction
合作研究:结合地球物理学、化学、材料科学和力学来确定速率状态摩擦的物理基础的实验和模拟
  • 批准号:
    1951462
  • 财政年份:
    2020
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: Experimental Determination of the Influence of Water on the Strength of Rocks
合作研究:水对岩石强度影响的实验测定
  • 批准号:
    2020880
  • 财政年份:
    2020
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Seismic Attenuation and Anelasticity in the Upper Mantle: the Effect of Continuous Far-Field Dislocation Creep
合作研究:上地幔的地震衰减和滞弹性:连续远场位错蠕变的影响
  • 批准号:
    1855461
  • 财政年份:
    2019
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Constraints From Fault Roughness on the Scale-dependent Strength of Rocks
合作研究:断层粗糙度对岩石尺度相关强度的约束
  • 批准号:
    1624504
  • 财政年份:
    2016
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: A Multidisciplinary Study to Determine the Fundamental Mechanisms of Rock Friction through Coordinated Experiments and Simulations
协作研究:通过协调实验和模拟确定岩石摩擦基本机制的多学科研究
  • 批准号:
    1550112
  • 财政年份:
    2016
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: Converging on a Physical Basis for Rate and State Friction through Nano-to-Macro-Scale Friction and Adhesion Experiments on Geological Materials
合作研究:通过地质材料的纳米到宏观摩擦和粘附实验,汇聚速率和状态摩擦的物理基础
  • 批准号:
    1464714
  • 财政年份:
    2014
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: Carbonation of Serpentinite in the San Andreas Fault: How Fluid-rock Interactions Impact Aseismic Creep
合作研究:圣安德烈亚斯断层中蛇纹岩的碳化:流体-岩石相互作用如何影响抗震蠕变
  • 批准号:
    1502472
  • 财政年份:
    2014
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Converging on a Physical Basis for Rate and State Friction through Nano-to-Macro-Scale Friction and Adhesion Experiments on Geological Materials
合作研究:通过地质材料的纳米到宏观摩擦和粘附实验,汇聚速率和状态摩擦的物理基础
  • 批准号:
    1141882
  • 财政年份:
    2012
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: Carbonation of Serpentinite in the San Andreas Fault: How Fluid-rock Interactions Impact Aseismic Creep
合作研究:圣安德烈亚斯断层中蛇纹岩的碳化:流体-岩石相互作用如何影响抗震蠕变
  • 批准号:
    1219908
  • 财政年份:
    2012
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Laboratory Experiments to Understand Dynamic Slip Weakening in Rocks and Analog Materials
合作研究:了解岩石和模拟材料动态滑移弱化的实验室实验
  • 批准号:
    0810059
  • 财政年份:
    2008
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Implementation Grant: Leading Inclusive Transformation in Geoscience via an Intercultural Network of Learning Ecosystems - LIT GEO
合作研究:实施资助:通过学习生态系统的跨文化网络引领地球科学的包容性转型 - LIT GEO
  • 批准号:
    2326733
  • 财政年份:
    2024
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: Implementation Grant: Leading Inclusive Transformation in Geoscience via an Intercultural Network of Learning Ecosystems - LIT GEO
合作研究:实施资助:通过学习生态系统的跨文化网络引领地球科学的包容性转型 - LIT GEO
  • 批准号:
    2326732
  • 财政年份:
    2024
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMPLEMENTATION: C-COAST: Changing the Culture of our Occupations to Achieve Systemic Transformation
合作研究:实施:C-COAST:改变我们的职业文化以实现系统转型
  • 批准号:
    2422305
  • 财政年份:
    2024
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Implementation Grant: Leading Inclusive Transformation in Geoscience via an Intercultural Network of Learning Ecosystems - LIT GEO
合作研究:实施资助:通过学习生态系统的跨文化网络引领地球科学的包容性转型 - LIT GEO
  • 批准号:
    2326731
  • 财政年份:
    2024
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Continuing Grant
NNA Research: Collaborative Research: Socio-Ecological Systems Transformation in River basins of the sub-Arctic under climate change (SESTRA)
NNA 研究:合作研究:气候变化下亚北极河流流域的社会生态系统转型 (SESTRA)
  • 批准号:
    2318383
  • 财政年份:
    2023
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
Collaborative Research: IMPLEMENTATION: C-COAST: Changing the Culture of our Occupations to Achieve Systemic Transformation
合作研究:实施:C-COAST:改变我们的职业文化以实现系统转型
  • 批准号:
    2233701
  • 财政年份:
    2023
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
Collaborative Research: IMPLEMENTATION: C-COAST: Changing the Culture of our Occupations to Achieve Systemic Transformation
合作研究:实施:C-COAST:改变我们的职业文化以实现系统转型
  • 批准号:
    2233699
  • 财政年份:
    2023
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
FW-HTF-RL/Collaborative Research: The Future of Aviation Inspection: Artificial Intelligence and Mixed Reality as Agents of Transformation
FW-HTF-RL/合作研究:航空检查的未来:人工智能和混合现实作为转型的推动者
  • 批准号:
    2326186
  • 财政年份:
    2023
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
FW-HTF-RL/Collaborative Research: The Future of Aviation Inspection: Artificial Intelligence and Mixed Reality as Agents of Transformation
FW-HTF-RL/合作研究:航空检查的未来:人工智能和混合现实作为转型的推动者
  • 批准号:
    2326187
  • 财政年份:
    2023
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Transformation, interaction and toxicity of emerging 2D nanomaterials free-standing and embedded onto nanocomposite membranes for PFAS degradation
合作研究:新兴二维纳米材料独立式和嵌入纳米复合膜上用于 PFAS 降解的转化、相互作用和毒性
  • 批准号:
    2228033
  • 财政年份:
    2023
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了