EAGER: Human Computation: Integrating the Crowd and the Machine
EAGER:人类计算:整合人群和机器
基本信息
- 批准号:1145291
- 负责人:
- 金额:$ 6.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-01 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Because both information and connectivity are more available today than ever before thanks to digital technologies, questions can now be addressed by enlisting massive human demographics to supplement the limitations of computer computation. This is especially relevant in the case of visual analytics, where human intuition remains far superior to existing computer object recognition algorithms. While algorithms are limited by pre-labeling requirements, humans can perceive subtle variations and nuances to identify and classify unexpected objects. These tasks, however, are often too massive in scale for a single human to accomplish. Distributing this task over a massive network not only succeeds in categorizing data, but generates massive quantities of human quantifiers (training data) to potentially teach computer vision algorithms to mimic human perception in order to distinguish the normal from the abnormal.This exploratory project will combine collective human visual perception with machine learning and object recognition, through a study of 1.25 million crowd-sourced inputs provided by over 6,000 volunteers labeling satellite imagery in a search for anomalies in northern Mongolia. These data, collected from June 2010 to the present via an online platform developed by the PI in collaboration with National Geographic Digital Media, afford an ideal "case study" environment to investigate the nature of crowd generated data and methods that distill the wide variability of human input into computational algorithms. The online participants, excited by the potential of discovering the tomb of Genghis Khan, examined massive amounts of ultra-high resolution multispectral satellite imagery to label loosely defined anomalies into various categories. Trends that emerged from the massive volume of labels represent a collective human perspective on what the images contain. A team led by the PI traveled to Mongolia to ground-truth areas of high user input convergence. The resulting ground-truthed anomalies provide a unique opportunity to both accurately measure the quality of human/automated analysis and to investigate the effect of supplementing noisy crowd-sourced data sets with small pools of absolute data in machine learning. In the current project the PI will develop a framework for applying and evaluating the following three research phases designed to study the nature of large scale human generated data for integration into supervised learning algorithms:1. Consensus Clustering - Tag evaluation mechanisms based upon the volume and consistency of neighboring tags and the ability of the individuals creating those tags. Unsupervised methods for "merging" labels will also be applied for extended anomalies such as roads and rivers.2. Feature Vector Extraction - Both the type of features (e.g., color, luminance, edges and gradients, scale, orientation, etc.) and the extent of the neighborhoods (e.g., local, wide and global) required to detect anomalies are unknown a priori. Thus, the aim is to determine sufficiently diverse features to capture all relevant cues within the image.3. Machine Learning - Dominant features representative of, and excluded from, pixel groups of given categories will be determined from the results of Phase 2 above.Broader Impacts: In this exploratory study the PI will lay the foundation for extracting new machine/human collaborative opportunities from the resource of the crowd. Understanding the bonds between human and computer intelligence will have a profound impact on many branches of science. Thus, concepts developed in this effort may ultimately prove transformative by affording migration of crowd-sourcing from a project-based tool for distributed analytics into a portal bridging collective human perception and machine learning.
由于今天的信息和连接比以往任何时候都更容易获得,这要归功于数字技术,现在可以通过招募大量的人口统计学数据来补充计算机计算的局限性来解决问题。这一点在视觉分析的情况下尤其相关,人类的直觉仍然远远优于现有的计算机对象识别算法。虽然算法受到预先标记要求的限制,但人类可以感知到细微的变化和细微差别,以识别和分类意想不到的对象。然而,这些任务往往规模太大,一个人无法完成。将这项任务分布在一个大规模的网络上,不仅成功地对数据进行分类,而且生成了大量的人类量词(训练数据),潜在地教导计算机视觉算法模仿人类的感知来区分正常和异常。这个探索性项目将把人类的集体视觉感知与机器学习和目标识别结合起来,通过研究6000多名志愿者提供的125万份众包输入来寻找蒙古北部的异常情况,这些志愿者标记了卫星图像。这些数据是从2010年6月至今通过PI与国家地理数字媒体合作开发的在线平台收集的,为调查人群生成数据的性质和将人类输入的广泛差异提取到计算算法中的方法提供了一个理想的“案例研究”环境。在线参与者对发现成吉思汗陵墓的潜力感到兴奋,他们检查了大量超高分辨率的多光谱卫星图像,将松散定义的异常划分为各种类别。从大量标签中出现的趋势代表了人类对图像所包含内容的集体视角。由PI领导的一个小组前往蒙古,前往用户输入趋同程度较高的实地真相地区。由此产生的地面真实异常提供了一个独特的机会,既可以准确衡量人工/自动分析的质量,也可以调查在机器学习中用小的绝对数据池补充嘈杂的众包数据集的效果。在目前的项目中,PI将开发一个框架,用于应用和评估以下三个研究阶段,这些研究阶段旨在研究大规模人类生成数据的性质,以便集成到监督学习算法中:1.共识聚类-标签评估机制基于相邻标签的数量和一致性以及创建这些标签的个人的能力。用于“合并”标签的非监督方法也将被应用于扩展异常,例如道路和河流。特征向量提取-包括特征类型(例如,颜色、亮度、边缘和渐变、比例、方向等)并且检测异常所需的邻域(例如,局部、广泛和全局)的范围是先验未知的。因此,目标是确定足够多样化的特征,以捕捉图像中所有相关的线索。机器学习-代表给定类别的像素组以及排除在其之外的主要特征将从上述第二阶段的结果中确定。广泛影响:在这项探索性研究中,PI将为从人群资源中提取新的机器/人类协作机会奠定基础。了解人类和计算机智能之间的联系将对许多科学分支产生深远的影响。因此,在这一努力中提出的概念可能最终被证明是变革性的,因为它提供了从基于项目的分布式分析工具到连接人类集体感知和机器学习的门户的迁移。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Albert Lin其他文献
Lateral antebrachial cutaneous nerve compression after subpectoral biceps tenodesis: a case report
- DOI:
10.1016/j.jse.2015.03.022 - 发表时间:
2015-07-01 - 期刊:
- 影响因子:
- 作者:
Zaneb Yaseen;Megan Cortazzo;Monica Bolland;Albert Lin - 通讯作者:
Albert Lin
Electronic Health Record Usage in an Academic Orthopaedic Sports Medicine Practice
电子健康记录在学术骨科运动医学实践中的使用
- DOI:
10.60118/001c.82078 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
C. Como;Meredith Flanagan;Guang;Matthew Como;J. Hughes;S. Rabuck;B. Lesniak;Albert Lin - 通讯作者:
Albert Lin
Injury Specific Capsular Plication Following Multiple Anterior Dislocations of the Glenohumeral Joint
盂肱关节多处前脱位后损伤特异性关节囊折叠术
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Keishi Takaba;Sene K. Polamalu;Ehab M. Nazzal;Zachary J. Herman;Satoshi Takeuchi;Volker Musahl1;Richard E. Debski;Albert Lin - 通讯作者:
Albert Lin
Hardware-Aware Moving Objects Detection in Satellite Image
卫星图像中的硬件感知移动物体检测
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Pei;Zheng;Kuang;Albert Lin;Chia - 通讯作者:
Chia
Pseudoaneurysm of the mitral-aortic intervalvular fibrosa.
二尖瓣-主动脉室间纤维假性动脉瘤。
- DOI:
10.2459/01.jcm.0000435619.93804.6b - 发表时间:
2015 - 期刊:
- 影响因子:3
- 作者:
Albert Lin;A. Poppas;Atizazul H Mansoor;A. B. Fernández - 通讯作者:
A. B. Fernández
Albert Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Albert Lin', 18)}}的其他基金
HCC: Small: Examining the Super User versus the Crowd in Human-Centered Computation
HCC:小:在以人为本的计算中检查超级用户与大众
- 批准号:
1219138 - 财政年份:2012
- 资助金额:
$ 6.6万 - 项目类别:
Continuing Grant
Research Initiation: Response of Full Scale Thin Concrete Shells to Transient Vibration
研究启动:全尺寸薄混凝土壳对瞬态振动的响应
- 批准号:
8503993 - 财政年份:1985
- 资助金额:
$ 6.6万 - 项目类别:
Standard Grant
相似国自然基金
靶向Human ZAG蛋白的降糖小分子化合物筛选以及疗效观察
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
HBV S-Human ESPL1融合基因在慢性乙型肝炎发病进程中的分子机制研究
- 批准号:81960115
- 批准年份:2019
- 资助金额:34.0 万元
- 项目类别:地区科学基金项目
基于自适应表面肌电模型的下肢康复机器人“Human-in-Loop”控制研究
- 批准号:61005070
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Travel: Scholarships for Student Attendance at Co-Located Conferences: Human Computation & Collective Intelligence 2023
旅行:为学生参加同期举办的会议提供奖学金:人类计算
- 批准号:
2327977 - 财政年份:2023
- 资助金额:
$ 6.6万 - 项目类别:
Standard Grant
Representing Human Anatomy for Computation and Communication: Synergistic Development of an Anatomical Ontology and Semantically-Augmented Anatomical Graphics
代表人体解剖学进行计算和通信:解剖本体论和语义增强解剖图形的协同发展
- 批准号:
10635511 - 财政年份:2023
- 资助金额:
$ 6.6万 - 项目类别:
Learning in the Human Brain: Anatomy, Physiology and Computation
人脑的学习:解剖学、生理学和计算
- 批准号:
2725902 - 财政年份:2022
- 资助金额:
$ 6.6万 - 项目类别:
Studentship
Behavioural Computation: Analysis, Models, and Algorithms for Supporting Human Improvement on the Web
行为计算:支持网络人类改进的分析、模型和算法
- 批准号:
RGPIN-2018-06195 - 财政年份:2022
- 资助金额:
$ 6.6万 - 项目类别:
Discovery Grants Program - Individual
Behavioural Computation: Analysis, Models, and Algorithms for Supporting Human Improvement on the Web
行为计算:支持网络人类改进的分析、模型和算法
- 批准号:
RGPIN-2018-06195 - 财政年份:2021
- 资助金额:
$ 6.6万 - 项目类别:
Discovery Grants Program - Individual
Computation and regulation of pain dynamics in the human central nervous system
人类中枢神经系统疼痛动力学的计算和调节
- 批准号:
MR/T010614/1 - 财政年份:2020
- 资助金额:
$ 6.6万 - 项目类别:
Fellowship
Behavioural Computation: Analysis, Models, and Algorithms for Supporting Human Improvement on the Web
行为计算:支持网络人类改进的分析、模型和算法
- 批准号:
RGPIN-2018-06195 - 财政年份:2020
- 资助金额:
$ 6.6万 - 项目类别:
Discovery Grants Program - Individual
Development of evolutionary computation techniques to realize human-out-of-the-loop
发展进化计算技术以实现人类脱离循环
- 批准号:
19H04179 - 财政年份:2019
- 资助金额:
$ 6.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Behavioural Computation: Analysis, Models, and Algorithms for Supporting Human Improvement on the Web
行为计算:支持网络人类改进的分析、模型和算法
- 批准号:
RGPIN-2018-06195 - 财政年份:2019
- 资助金额:
$ 6.6万 - 项目类别:
Discovery Grants Program - Individual
Behavioural Computation: Analysis, Models, and Algorithms for Supporting Human Improvement on the Web
行为计算:支持网络人类改进的分析、模型和算法
- 批准号:
RGPIN-2018-06195 - 财政年份:2018
- 资助金额:
$ 6.6万 - 项目类别:
Discovery Grants Program - Individual