HCC: Small: Examining the Super User versus the Crowd in Human-Centered Computation

HCC:小:在以人为本的计算中检查超级用户与大众

基本信息

  • 批准号:
    1219138
  • 负责人:
  • 金额:
    $ 49.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-15 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

This project investigates the nature of crowd-based human analytics at various scales, specifically how the concentrated efforts of a few contributors differ from the summed micro contributions of many. Automated approaches are good at handling huge amounts of data, but they lack the flexibility and sensitivity of human perception when making decisions or observations, especially when computational challenges revolve around visual analytics. Networks of humans, as an alternative, can scale up human perception by facilitating massively parallel computation through the distribution of micro-tasks, but human data interpretation is variant between individuals. Wide variability in the amount of participation of individuals in crowd-based computation creates non-uniform representations of a crowd, which is an important discrepancy that could significantly impact the validity of the term "crowd" in crowdsourcing. The research will explore data generated from the extreme ends of the participation curve and quantify the quality of data produced from a broad sampling of a crowd versus concentrated voice of the few "super users." As one measure of comparison, the researchers will observe how characteristically variant samplings of human generated analysis alter the outcome when used as training data in a machine learning framework. This investigation will utilize data generated from a crowdsourcing effort that tapped over 10,000 volunteer participants to generate over 2 million human annotations on ultra-high resolution satellite imagery in search for tombs across Mongolia. Image tiles were distributed at random to participants who tagged anomalies of interest, while crowd consensus on points of interest provided a field survey team with locations to ground truth in Mongolia. Participation ranged widely, as illustrated by the fact that 20 percent of the data came from the most active 1 percent of participants, while at the other extreme 20 percent of the data came from the 80 percent of participants who were least active. While consensus of the crowd provided one metric to measure the quality of anomaly identifications, ground truth observations showed actual validation tended to correspond with identifications made from higher interest participants. This study will explore the nature of data generated from experts versus crowds of non-experts, starting from the discrepancies in participation levels.Crowd-based human analytics has been welcomed as a potential solution to some of the world?s largest data challenges. Examples of crowdsourcing have shown that the power of distributed microtasking can engage challenges as overwhelming as categorizing the galaxies, or as complicated as folding proteins. However this concept depends upon the recruitment of human help, often at whatever levels of participation an individual is willing to contribute. The variation in contributions, and thus impact levels, between individuals can be staggering, with participation typically distributed across a longtail curve. That fundamental aspect of a recruited crowd should be recognized and understood when extracting knowledge from the data that is generated. This project will contribute to the necessary understanding by determining how the distributed inputs from a crowd differ from the concentrated efforts of an individual. Insight into the effects of crowd dynamics on results will determine how we pool and retain participation and, thus, have transformative impact on the development of crowdsourcing as a concept for analytics.
该项目研究了各种规模的基于人群的人类分析的性质,特别是少数贡献者的集中努力与许多贡献者的微观贡献之和有何不同。 自动化方法擅长处理大量数据,但在做出决策或观察时,它们缺乏人类感知的灵活性和敏感性,特别是当计算挑战围绕视觉分析时。作为替代方案,人类网络可以通过微任务的分布促进大规模并行计算来扩大人类感知,但人类数据的解释在个体之间是不同的。 在基于群体的计算中,个体参与量的广泛变化产生了群体的非统一表示,这是一个重要的差异,可能会显著影响“群体”一词在众包中的有效性。 该研究将探索参与曲线极端产生的数据,并量化从广泛的人群抽样产生的数据质量,以及少数“超级用户”的集中声音。作为一种比较措施,研究人员将观察人类生成分析的特征变量采样在用作机器学习框架中的训练数据时如何改变结果。 这项调查将利用众包工作产生的数据,该工作利用了1万多名志愿者参与,在超高分辨率卫星图像上生成了200多万个人工注释,以寻找蒙古各地的坟墓。图像瓦片随机分发给标记感兴趣异常的参与者,而人群对感兴趣点的共识为实地调查小组提供了蒙古地面实况的位置。参与者的范围很广,20%的数据来自最活跃的1%的参与者,而在另一个极端,20%的数据来自80%的参与者,他们最不活跃。 虽然人群的共识提供了一个衡量异常识别质量的指标,但地面实况观察显示,实际验证往往与更高兴趣参与者的识别相对应。 这项研究将探讨从专家与非专家群体产生的数据的性质,从参与水平的差异开始。最大的数据挑战。 众包的例子已经表明,分布式微任务的力量可以应对像星系分类这样巨大的挑战,或者像折叠蛋白质那样复杂的挑战。 然而,这一概念取决于招募人力帮助,通常是个人愿意做出贡献的任何参与水平。个人之间的贡献和影响水平的差异可能是惊人的,参与通常分布在长尾曲线上。在从生成的数据中提取知识时,应该认识和理解招募人群的基本方面。 该项目将通过确定群体的分布式输入与个人的集中努力有何不同,从而有助于必要的理解。 深入了解群体动态对结果的影响将决定我们如何汇集和保留参与,从而对众包作为分析概念的发展产生变革性影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Albert Lin其他文献

Lateral antebrachial cutaneous nerve compression after subpectoral biceps tenodesis: a case report
  • DOI:
    10.1016/j.jse.2015.03.022
  • 发表时间:
    2015-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Zaneb Yaseen;Megan Cortazzo;Monica Bolland;Albert Lin
  • 通讯作者:
    Albert Lin
Injury Specific Capsular Plication Following Multiple Anterior Dislocations of the Glenohumeral Joint
盂肱关节多处前脱位后损伤特异性关节囊折叠术
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Keishi Takaba;Sene K. Polamalu;Ehab M. Nazzal;Zachary J. Herman;Satoshi Takeuchi;Volker Musahl1;Richard E. Debski;Albert Lin
  • 通讯作者:
    Albert Lin
Electronic Health Record Usage in an Academic Orthopaedic Sports Medicine Practice
电子健康记录在学术骨科运动医学实践中的使用
Pseudoaneurysm of the mitral-aortic intervalvular fibrosa.
二尖瓣-主动脉室间纤维假性动脉瘤。
  • DOI:
    10.2459/01.jcm.0000435619.93804.6b
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Albert Lin;A. Poppas;Atizazul H Mansoor;A. B. Fernández
  • 通讯作者:
    A. B. Fernández
Hardware-Aware Moving Objects Detection in Satellite Image
卫星图像中的硬件感知移动物体检测

Albert Lin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Albert Lin', 18)}}的其他基金

EAGER: Human Computation: Integrating the Crowd and the Machine
EAGER:人类计算:整合人群和机器
  • 批准号:
    1145291
  • 财政年份:
    2011
  • 资助金额:
    $ 49.73万
  • 项目类别:
    Standard Grant
Research Initiation: Response of Full Scale Thin Concrete Shells to Transient Vibration
研究启动:全尺寸薄混凝土壳对瞬态振动的响应
  • 批准号:
    8503993
  • 财政年份:
    1985
  • 资助金额:
    $ 49.73万
  • 项目类别:
    Standard Grant

相似国自然基金

昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
  • 批准号:
    32000033
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
  • 批准号:
    31972324
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
  • 批准号:
    81900988
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
  • 批准号:
    31870821
  • 批准年份:
    2018
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
  • 批准号:
    31802058
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
  • 批准号:
    31772128
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
  • 批准号:
    81704176
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
  • 批准号:
    91640114
  • 批准年份:
    2016
  • 资助金额:
    85.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

CAREER: Physicalizing Small Data: A First-Person Approach to Examining IoT Data
职业:物理化小数据:检查物联网数据的第一人称方法
  • 批准号:
    2236822
  • 财政年份:
    2023
  • 资助金额:
    $ 49.73万
  • 项目类别:
    Continuing Grant
Doctoral Dissertation Research: Examining the effects of small mammal structures and population changes on biogeochemical cycling in Arctic soils
博士论文研究:研究小型哺乳动物结构和种群变化对北极土壤生物地球化学循环的影响
  • 批准号:
    2113432
  • 财政年份:
    2021
  • 资助金额:
    $ 49.73万
  • 项目类别:
    Standard Grant
Collaborative Research: Examining the Vulnerability and Recovery of Small Farms to Natural Hazards and the Impact to Rural Community Resilience
合作研究:检查小农场对自然灾害的脆弱性和恢复以及对农村社区复原力的影响
  • 批准号:
    2053534
  • 财政年份:
    2021
  • 资助金额:
    $ 49.73万
  • 项目类别:
    Standard Grant
Influencing policy and practice through examining UK small business understanding of and response to COVID-19 regulation and guidance
通过检查英国小企业对 COVID-19 法规和指南的理解和响应来影响政策和实践
  • 批准号:
    ES/W001799/1
  • 财政年份:
    2021
  • 资助金额:
    $ 49.73万
  • 项目类别:
    Research Grant
Collaborative Research: Examining the Vulnerability and Recovery of Small Farms to Natural Hazards and the Impact to Rural Community Resilience
合作研究:检查小农场对自然灾害的脆弱性和恢复以及对农村社区复原力的影响
  • 批准号:
    2053115
  • 财政年份:
    2021
  • 资助金额:
    $ 49.73万
  • 项目类别:
    Standard Grant
Collaborative Research: Examining the Vulnerability and Recovery of Small Farms to Natural Hazards and the Impact to Rural Community Resilience
合作研究:检查小农场对自然灾害的脆弱性和恢复以及对农村社区复原力的影响
  • 批准号:
    2233145
  • 财政年份:
    2021
  • 资助金额:
    $ 49.73万
  • 项目类别:
    Standard Grant
Collaborative Research: Examining the Vulnerability and Recovery of Small Farms to Natural Hazards and the Impact to Rural Community Resilience
合作研究:检查小农场对自然灾害的脆弱性和恢复以及对农村社区复原力的影响
  • 批准号:
    2053545
  • 财政年份:
    2021
  • 资助金额:
    $ 49.73万
  • 项目类别:
    Standard Grant
Examining small molecule activation in metal-organic framework pores
检查金属有机骨架孔中的小分子活化
  • 批准号:
    DP190101402
  • 财政年份:
    2019
  • 资助金额:
    $ 49.73万
  • 项目类别:
    Discovery Projects
SaTC: CORE: Small: The Blurring of Non-essential Notifications and Critical Security Warnings: Examining the Problem of Generalization in the Brain
SaTC:核心:小:非必要通知和关键安全警告的模糊:检查大脑中的泛化问题
  • 批准号:
    1931108
  • 财政年份:
    2018
  • 资助金额:
    $ 49.73万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: The Blurring of Non-essential Notifications and Critical Security Warnings: Examining the Problem of Generalization in the Brain
SaTC:核心:小:非必要通知和关键安全警告的模糊:检查大脑中的泛化问题
  • 批准号:
    1814721
  • 财政年份:
    2018
  • 资助金额:
    $ 49.73万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了