Generalisation of the Fractional Polynomial procedure for semi-continuous variables in epidemiology and clinical research
流行病学和临床研究中半连续变量的分数多项式程序的推广
基本信息
- 批准号:203062028
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2011
- 资助国家:德国
- 起止时间:2010-12-31 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In epidemiology and in clinical research, a common goal is to estimate the effect of covariables on an outcome quantitatively by using appropriate regression models. These covariates often have a proportion of individuals with zero exposure, while the distribution of the population exposed is continuous (variables with so-called spike at zero), e.g. smoking, duration of breastfeeding, or alcohol consumption. Modelling of the dose-response function is then possible with a method developed by the applicants which is an extension of the fractional polynomial approach. The aim of the project is to develop new improved methods for analysis of studies with semi-continuous variables, to apply them for the analysis of studies and to provide software tools to disseminate the methods.Results until now: We have developed and published an improved version of the recently published procedure to handle variables with a spike at zero. We have developed theoretical justifications for the procedure by investigating specific distribution classes. In a simulation study for one spike variable we could show improved properties of this new procedure in comparison to the former. For two spike variables we have proposed several approaches for an extension of the procedure. Examples have shown that methods of handling two spike variables are strongly dependent upon the bivariate distribution and the correlation structure of the variables. The approaches will be further evaluated in the course of the project in simulation studies. For three or more spike variables we have proposed a strategy. For practical applications, we have obtained data from several epidemiological and clinical studies and made these ready for analyses with our methods. Application of the method to these data has already started in the first funding period and will last until the end of the project. Work plan: First, in a simulation study we will investigate whether results from the logistic model transfer to the Cox model for censored survival data. Then we are going to evaluate the different approaches for two spike variables in a large simulation study. Suitable criteria to assess properties and to compare the different proposals have to be defined. In an example with three spike variables we will investigate whether the proposed strategy is suitable or whether further extensions are required. A recent approach to investigate for interactions between treatment and a continuous variable will be extended for spike at zero variables. We will use the role of hormonal receptors and treatment of breast cancer patients with hormonal therapy as an example. For smoking several dose metrics (e.g. comprehensive smoking index) have been proposed recently. Using our approaches we will derive new dose metrics and compare these with proposals from the literature.
在流行病学和临床研究中,一个共同的目标是通过使用适当的回归模型定量估计协变量对结果的影响。 这些协变量通常有一定比例的零暴露个体,而暴露人群的分布是连续的(所谓峰值为零的变量),例如吸烟、母乳喂养持续时间或饮酒。 然后,可以用申请人开发的方法对剂量-反应函数进行建模,该方法是分数多项式方法的扩展。该项目的目的是开发新的改进的方法分析的研究与半连续变量,将它们应用于分析的研究,并提供软件工具来传播的methods.Results到现在为止:我们已经开发和出版了一个改进的版本最近出版的程序来处理变量与尖峰在零。我们已经制定了理论上的理由的程序,通过调查特定的分布类。在一个尖峰变量的模拟研究中,我们可以显示出改进的性能,这种新的程序相比,前者。对于两个尖峰变量,我们已经提出了几种方法的程序的扩展。实例表明,处理两个尖峰变量的方法强烈依赖于变量的二元分布和相关结构。在项目进行期间,将在模拟研究中进一步评价这些方法。对于三个或更多的尖峰变量,我们提出了一个策略。对于实际应用,我们已经从几个流行病学和临床研究中获得了数据,并准备用我们的方法进行分析。 在第一个供资期就已开始对这些数据应用该方法,并将持续到项目结束。工作计划:首先,在模拟研究中,我们将调查是否从逻辑模型的结果转移到删失生存数据的考克斯模型。然后,我们将在一个大型模拟研究中评估两个尖峰变量的不同方法。必须界定评估物业和比较不同建议的适当准则。在一个有三个尖峰变量的例子中,我们将研究所提出的策略是否合适,或者是否需要进一步的扩展。最近的一种研究治疗和连续变量之间相互作用的方法将扩展到零变量的尖峰。我们将以激素受体的作用和乳腺癌患者的激素治疗为例。对于吸烟,最近已经提出了几种剂量度量(例如,综合吸烟指数)。使用我们的方法,我们将获得新的剂量指标,并将这些与文献中的建议进行比较。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modeling continuous covariates with a “spike” at zero: Bivariate approaches
对“尖峰”为零的连续协变量进行建模:双变量方法
- DOI:10.1002/bimj.201400112
- 发表时间:2016
- 期刊:
- 影响因子:1.7
- 作者:Jenkner C;Lorenz E;Becher H;Sauerbrei W
- 通讯作者:Sauerbrei W
Modeling Variables With a Spike at Zero: Examples and Practical Recommendations
- DOI:10.1093/aje/kww122
- 发表时间:2017-04-15
- 期刊:
- 影响因子:5
- 作者:Lorenz, Eva;Jenkner, Carolin;Becher, Heiko
- 通讯作者:Becher, Heiko
Dose–response modelling for bivariate covariates with and without a spike at zero: theory and application to binary outcomes
有或没有零峰值的双变量协变量的剂量响应模型:二元结果的理论和应用
- DOI:10.1111/stan.12064
- 发表时间:2015
- 期刊:
- 影响因子:1.5
- 作者:Lorenz E;Jenkner C;Sauerbrei W;Becher H
- 通讯作者:Becher H
Analysing covariates with spike at zero: A modified FP procedure and conceptual issues
- DOI:10.1002/bimj.201100263
- 发表时间:2012-09-01
- 期刊:
- 影响因子:1.7
- 作者:Becher, Heiko;Lorenz, Eva;Sauerbrei, Willi
- 通讯作者:Sauerbrei, Willi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Heiko Becher其他文献
Professor Dr. Heiko Becher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Heiko Becher', 18)}}的其他基金
Entzündliche, genetische und sozioökonomische Determinanten des ischämischen Schlaganfalls und ihre Interdependenz
缺血性中风的炎症、遗传和社会经济决定因素及其相互依赖性
- 批准号:
110550420 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
Herz-Kreislauf-Krankheiten und Diabetes bei Aussiedlern: Kohortenstudie zur Identifizierung von Risikofaktoren und Erklärung spezieller Mortalitätsmuster
移民的心血管疾病和糖尿病:队列研究以确定危险因素并解释特定的死亡率模式
- 批准号:
151533336 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
Health Behaviour of persons with Multiple Sclerosis in Germany: Current status and development of supportive strategies for smoking cessation and dietary behaviour change (BEHAVIMS)
德国多发性硬化症患者的健康行为:戒烟和饮食行为改变(BEHAVIMS)支持策略的现状和发展
- 批准号:
495901503 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Statistical Model Building Strategies for Cardiologic Applications (SAMBA)
心脏病学应用统计模型构建策略 (SAMBA)
- 批准号:
437007492 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Collaborative Research: Embedding Material-Informed History through Fractional Calculus State Variable Formulation
合作研究:通过分数阶微积分状态变量公式嵌入材料丰富的历史
- 批准号:
2345437 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Multi-Scale Magnonic Crystals and Fractional Schr?dinger Equation-Governed Dynamics
多尺度磁子晶体和分数阶薛定谔方程控制的动力学
- 批准号:
2420266 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Embedding Material-Informed History through Fractional Calculus State Variable Formulation
合作研究:通过分数阶微积分状态变量公式嵌入材料丰富的历史
- 批准号:
2345438 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Fractional decomposition of graphs and the Nash-Williams conjecture
图的分数式分解和纳什-威廉姆斯猜想
- 批准号:
DP240101048 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Tuning the Frequency Response of Fractional-Order Microsupercapacitors
调整分数阶微型超级电容器的频率响应
- 批准号:
2423124 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
EFRI BRAID: Fractional-order neuronal dynamics for next generation memcapacitive computing networks
EFRI BRAID:下一代记忆电容计算网络的分数阶神经元动力学
- 批准号:
2318139 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Novel platforms for topology and non-Fermi liquids: From projected topological branes to non-Abelian and fractional materials
职业:拓扑和非费米液体的新颖平台:从投影拓扑膜到非阿贝尔和分数材料
- 批准号:
2238679 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Development from PID Control to FOPID Control by Establishing Fractional-Order Control Method
通过建立分数阶控制方法从PID控制发展到FOPID控制
- 批准号:
23K03749 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cygnes Real: the first real-estate investment platform to use tokenisation, enabling fast, accessible and low cost fractional ownership of property
Cygnes Real:第一个使用代币化的房地产投资平台,实现快速、可访问且低成本的财产部分所有权
- 批准号:
10019107 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Collaborative R&D