Collaborative:EAGER: A Model Based System for the Automated Design of Synthetic Genetic Circuits by Mathematical Optimization

协作:EAGER:基于模型的系统,用于通过数学优化自动设计合成遗传电路

基本信息

  • 批准号:
    1146926
  • 负责人:
  • 金额:
    $ 27.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

Synthetic Biology is a nascent field with applications that range from bio-fabrication to alternative energy. Despite its significance, engineering of biological circuits still relies on trial-and-error tinkering techniques, with limited computational support. If Synthetic Biology is to advance to more complex synthetic systems that go beyond a handful of interacting parts, a scalable, integrative, methodological approach is necessary. In an analogy to integrated circuits, when it comes to circuit engineering, the role of detailed computer models, optimization methods, simulators and design tools is paramount.Intellectual Merit: This project aims to pave the way towards an optimization-based, automated design framework for synthetic gene circuits that adhere to user-defined constraints. A synthetic gene circuit is a collection of one or more genes, together with elements (promoters, ribosome binding sites, etc.) that influence gene expression. The wiring, i.e. the order and position of every element, within a synthetic gene circuit determines the gene expression pattern, and overall behavior of the circuit. These circuits are introduced, usually as part of a plasmid(s), in a host organism that can be readily manipulated in order to achieve a desired outcome (e.g. specific temporal behavior, or production of an enzyme). To facilitate faster time-to-market solutions and more robust, predictable designs, PIs will develop a design and optimization tool prototype. To that end, PIs propose a new optimization formulation that encompasses multiple biological models relevant to synthetic genetic circuit design. In addition, they propose a hybrid optimization-simulation technique to capture additional effects related to cell division, noise, and evolutionary processes. The investigation will focus on how state-of-the-art techniques from combinatorial optimization can be applied to find the optimal circuit for a specific task. Since the tool will need a library of well-characterized components to operate, PIs will create a mutant library of three widely-used regulators, then quantitatively characterize them, and store this information in a publicly available database. As a proof-of-concept experiment, they will assess their integrative approach by constructing an automatically-designed synthetic circuit, measuring its output and deviation from the desired goal, and then comparing it to other similar designs that have been already available in literature. Broader Impact: An optimization-based, design tool for synthetic biology has the potential to provide a service to the academic community by reducing drastically the time-to-market aspect of synthetic designs, and providing insight on biological function, thus accelerating research in an exponentially growing field. All components and characterized libraries that will be developed as part of this award will be publicly available, deposited in the synthetic biology community?s standard Parts Registry. Furthermore, this award will partially support the work and training of the UC Davis IGEM team, a synthetic biology undergraduate team who competes in the annual IGEM competition. Knowledge from this project will be directly transferred into classrooms through the course ECS 289K "Computational Challenges in Systems and Synthetic Biology" (UC Davis), and the course CSC 450/550 "Algorithms for Bioinformatics" (U. Arizona).
合成生物学是一个新兴的领域,其应用范围从生物制造到替代能源。尽管意义重大,但生物电路工程仍然依赖于试错修补技术,计算支持有限。如果合成生物学要发展到更复杂的合成系统,超越少数相互作用的部分,一个可扩展的,综合的方法是必要的。与集成电路类似,在电路工程中,详细的计算机模型、优化方法、模拟器和设计工具的作用至关重要。智力优势:本项目旨在为基于优化的自动化合成基因电路设计框架铺平道路,该框架遵循用户定义的约束。合成基因回路是一个或多个基因的集合,连同元件(启动子、核糖体结合位点等)。影响基因表达。合成基因回路中的布线,即每个元件的顺序和位置,决定了基因表达模式和回路的整体行为。 这些回路通常作为质粒的一部分引入宿主生物体中,可以容易地操纵宿主生物体以实现期望的结果(例如特定的时间行为或酶的产生)。为了加快解决方案的上市速度和实现更稳健、更可预测的设计,PI将开发一个设计和优化工具原型。为此,PI提出了一种新的优化配方,包括与合成基因电路设计相关的多个生物模型。此外,他们还提出了一种混合优化模拟技术,以捕获与细胞分裂,噪声和进化过程相关的其他影响。调查将集中在如何从组合优化的最先进的技术可以应用于找到一个特定的任务的最佳电路。由于该工具需要一个充分表征的组件库才能运行,PI将创建三个广泛使用的调节器的突变库,然后对其进行定量表征,并将此信息存储在公开的数据库中。作为一个概念验证实验,他们将通过构建一个自动设计的合成电路,测量其输出和与预期目标的偏差,然后将其与文献中已有的其他类似设计进行比较,来评估他们的综合方法。更广泛的影响:一个基于优化的合成生物学设计工具有可能为学术界提供服务,大大减少合成设计的上市时间,并提供对生物功能的见解,从而加速指数增长领域的研究。所有的组件和特征库,将开发作为这个奖项的一部分将是公开的,存放在合成生物学社区?的标准零件注册表。此外,该奖项将部分支持加州大学戴维斯分校IGEM团队的工作和培训,该团队是一个合成生物学本科团队,参加年度IGEM比赛。该项目的知识将通过ECS 289 K“系统和合成生物学中的计算挑战”(加州大学戴维斯分校)和CSC 450/550“生物信息学算法”(加州大学戴维斯分校)课程直接转移到课堂上。Arizona)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ilias Tagkopoulos其他文献

Identification of Differential, Health-Related Compounds in Chardonnay Marc through Network-Based Meta-Analysis
  • DOI:
    10.1093/cdn/nzaa045_108
  • 发表时间:
    2020-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Gabriel Simmons;Fanny Lee;Minseung Kim;Roberta Holt;Ilias Tagkopoulos
  • 通讯作者:
    Ilias Tagkopoulos
FoodAtlas: Automated knowledge extraction of food and chemicals from literature
食品图谱:从文献中自动提取食品和化学品相关知识
  • DOI:
    10.1016/j.compbiomed.2024.109072
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
    6.300
  • 作者:
    Jason Youn;Fangzhou Li;Gabriel Simmons;Shanghyeon Kim;Ilias Tagkopoulos
  • 通讯作者:
    Ilias Tagkopoulos
Prediction of adolescent depression from prenatal and childhood data from ALSPAC using machine learning
利用机器学习从 ALSPAC 的产前和儿童时期数据预测青少年抑郁症
  • DOI:
    10.1038/s41598-024-72158-9
  • 发表时间:
    2024-10-07
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Arielle Yoo;Fangzhou Li;Jason Youn;Joanna Guan;Amanda E. Guyer;Camelia E. Hostinar;Ilias Tagkopoulos
  • 通讯作者:
    Ilias Tagkopoulos

Ilias Tagkopoulos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ilias Tagkopoulos', 18)}}的其他基金

ABI Innovation: EAGER: Towards an optimal experimental design framework with Omics data
ABI Innovation:EAGER:利用组学数据实现最佳实验设计框架
  • 批准号:
    1743101
  • 财政年份:
    2017
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Standard Grant
Big Data on Small Organisms: Petascale Simulations of Data-Driven, Whole-Cell Microbial Models
小生物体的大数据:数据驱动的全细胞微生物模型的千万亿次模拟
  • 批准号:
    1516695
  • 财政年份:
    2015
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Standard Grant
Elucidating the Genetic Basis and Evolutionary Potential of Cross-stress Behavior in Escherichia coli
阐明大肠杆菌交叉应激行为的遗传基础和进化潜力
  • 批准号:
    1244626
  • 财政年份:
    2013
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Standard Grant
CAREER: Integrative Synthetic Biology: A Scalable Framework for Modular Multilevel Design
职业:综合合成生物学:模块化多级设计的可扩展框架
  • 批准号:
    1254205
  • 财政年份:
    2013
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Continuing Grant
Petascale simulations of Complex Biological Behavior in Fluctuating Environments
波动环境中复杂生物行为的千万亿次模拟
  • 批准号:
    0941360
  • 财政年份:
    2009
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: EAGER - Developing a Consortium Model for the Successful Implementation of the Rising Engineering Education Faculty Experience (REEFE)
合作研究:EAGER - 为成功实施不断上升的工程教育教师经验 (REEFE) 开发联盟模型
  • 批准号:
    2013735
  • 财政年份:
    2019
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Standard Grant
EAGER: Real-Time: Collaborative Research: Unified Theory of Model-based and Data-driven Real-time Optimization and Control for Uncertain Networked Systems
EAGER:实时:协作研究:不确定网络系统基于模型和数据驱动的实时优化与控制的统一理论
  • 批准号:
    1953049
  • 财政年份:
    2019
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Standard Grant
EAGER SitS: Collaborative Research: Projecting Arctic soil and ecosystem responses to warming using SCAMPS: A stoichiometrically coupled, acclimating microbe-plant-soil model
EAGER SitS:合作研究:使用 SCAMPS 预测北极土壤和生态系统对变暖的反应:化学计量耦合的适应微生物-植物-土壤模型
  • 批准号:
    1841608
  • 财政年份:
    2018
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Standard Grant
EAGER: Real-Time: Collaborative Research: Unified Theory of Model-based and Data-driven Real-time Optimization and Control for Uncertain Networked Systems
EAGER:实时:协作研究:不确定网络系统基于模型和数据驱动的实时优化与控制的统一理论
  • 批准号:
    1839707
  • 财政年份:
    2018
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Standard Grant
EAGER: Real-Time: Collaborative Research: Unified Theory of Model-based and Data-driven Real-time Optimization and Control for Uncertain Networked Systems
EAGER:实时:协作研究:不确定网络系统基于模型和数据驱动的实时优化与控制的统一理论
  • 批准号:
    1839804
  • 财政年份:
    2018
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Standard Grant
Collaborative Research (HBCU-DCL EAGER): Broadening participation and strengthening capacity in interdisciplinary engineering model development
协作研究(HBCU-DCL EAGER):扩大跨学科工程模型开发的参与并加强能力
  • 批准号:
    1741561
  • 财政年份:
    2017
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER - Developing a Consortium Model for the Successful Implementation of the Rising Engineering Education Faculty Experience (REEFE)
合作研究:EAGER - 为成功实施不断上升的工程教育教师经验 (REEFE) 开发联盟模型
  • 批准号:
    1743666
  • 财政年份:
    2017
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Standard Grant
Collaborative Research (HBCU-DCL EAGER): Broadening participation and strengthening capacity in interdisciplinary engineering model development
协作研究(HBCU-DCL EAGER):扩大跨学科工程模型开发的参与并加强能力
  • 批准号:
    1741662
  • 财政年份:
    2017
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Standard Grant
SCH: EAGER: RUI: Collaborative Research: A novel 3D image predictive model for osteoarthritis disease
SCH:EAGER:RUI:协作研究:骨关节炎疾病的新型 3D 图像预测模型
  • 批准号:
    1723420
  • 财政年份:
    2017
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER - Developing a Consortium Model for the Successful Implementation of the Rising Engineering Education Faculty Experience (REEFE)
合作研究:EAGER - 为成功实施不断上升的工程教育教师经验 (REEFE) 开发联盟模型
  • 批准号:
    1743667
  • 财政年份:
    2017
  • 资助金额:
    $ 27.11万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了