EAGER: Real-Time: Collaborative Research: Unified Theory of Model-based and Data-driven Real-time Optimization and Control for Uncertain Networked Systems
EAGER:实时:协作研究:不确定网络系统基于模型和数据驱动的实时优化与控制的统一理论
基本信息
- 批准号:1953049
- 负责人:
- 金额:$ 5.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project seeks to find a common decision-making framework that seamlessly integrates offline data and computing, real-time data and computing, learning, and probabilistic predictive decision. It provides a unified theory of model-based and data-driven real-time optimization and control for uncertain networked systems. Integral Reinforcement Learning holds the key to integrating real-time data-driven methods, model-based methods, and physical constraints. The structure of Integral Reinforcement Learning will be explored to investigate exactly how and where to use Deep Learning neural networks in architectures that have multiple nested learning loops. A probabilistic spatiotemporal scenario data-driven framework will then be developed for multi-scale sequential control of networked engineering systems under uncertainty. The algorithms and tools developed will be used to sculpt optimal power profiles for power electronics converters in a DC distribution network and help mitigate the adverse effects of intermittent sources, uncertain load demand, or faults. The project represents a radical departure from the exiting big data and decision-making research, toward developing autonomous decision-making under uncertainty constructs for systems of growing scales and time critical mission requirements. Algorithms and tools developed can be extended to other smart and connected domains, e.g., air traffic management, networked traffic platoons, and sensor networks. US microgrid capacity is expected to reach 4.3 GW by 2020. DC distribution networks are emerging alternatives to AC distribution ones, and are critical to the scalable integration of renewable energy resources and electrified transportation fleets. Research results will be ported into topics in reinforcement learning, optimal control, networked control systems, data-driven analysis and decision-making, and power electronics systems. This project synergizes research activities between University of Texas at Arlington (UTA) and Texas A&M-Corpus Christi (TAMUCC), both HBCU/MI Hispanic Serving Institutions, and involves students from Electrical Engineering and Computer Science backgrounds.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目试图找到一个共同的决策框架,该框架无缝地集成了离线数据和计算,实时数据以及计算,学习和概率预测性决策。它为不确定的网络系统提供了基于模型和数据驱动的实时优化和控制的统一理论。积分加强学习是整合实时数据驱动方法,基于模型的方法和物理约束的关键。将探索整体增强学习的结构,以确切地研究具有多个嵌套学习环的体系结构中的深度学习神经网络。然后将开发一个概率时空场景数据驱动的框架,以用于对不确定性下的网络工程系统的多尺度顺序控制。开发的算法和工具将用于雕刻DC分销网络中电力电子转换器的最佳功率配置文件,并有助于减轻间歇源,不确定的负载需求或故障的不良影响。该项目代表了与退出的大数据和决策研究的根本性,而不是在不确定性构建中为增长量表和时间关键任务要求的系统制定自主决策。 开发的算法和工具可以扩展到其他智能和连接的域,例如空中交通管理,网络交通排和传感器网络。预计到2020年,美国微电网容量将达到4.3 gw。直流分配网络是AC分配的替代品,对于可再生能源资源和电气运输机队的可扩展整合至关重要。研究结果将移植到加强学习,最佳控制,网络控制系统,数据驱动分析和决策以及电力电子系统方面的主题。该项目旨在使德克萨斯大学阿灵顿分校(UTA)与德克萨斯州A&M-Corpus Christi(TAMUCC)之间的研究活动(HBCU/MI西班牙裔服务机构)均涉及电气工程和计算机科学背景的学生,这涉及NSF的法定任务和审查范围的范围。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-Agent Reinforcement Learning Based Coded Computation for Mobile Ad Hoc Computing
- DOI:10.1109/icc42927.2021.9500600
- 发表时间:2021-04
- 期刊:
- 影响因子:0
- 作者:Baoqian Wang;Junfei Xie;K. Lu;Yan Wan;Shengli Fu
- 通讯作者:Baoqian Wang;Junfei Xie;K. Lu;Yan Wan;Shengli Fu
Automated Playbook for UAV Traffic Management Based on Spatiotemporal Scenario Data
基于时空场景数据的无人机交通管理自动化手册
- DOI:10.1142/s2301385022500145
- 发表时间:2021
- 期刊:
- 影响因子:5.3
- 作者:He, Chenyuan;Wan, Yan;Xie, Junfei
- 通讯作者:Xie, Junfei
Safe Path Planning for Unmanned Aerial Vehicle under Location Uncertainty
- DOI:10.1109/icca51439.2020.9264542
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Pengcheng Wu;Junfei Xie;Jun Chen
- 通讯作者:Pengcheng Wu;Junfei Xie;Jun Chen
Multi-Regional Coverage Path Planning for Robots with Energy Constraint
- DOI:10.1109/icca51439.2020.9264472
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Junfei Xie;Jun Chen
- 通讯作者:Junfei Xie;Jun Chen
Data-Driven Multi-UAV Navigation in Large-Scale Dynamic Environments Under Wind Disturbances
风扰下大规模动态环境下数据驱动的多无人机导航
- DOI:10.2514/6.2021-1284
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Wang, Baoqian;Xie, Junfei;Chen, Jun
- 通讯作者:Chen, Jun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Junfei Xie其他文献
Strategic air traffic flow management under uncertainties using scalable sampling-based dynamic programming and Q-learning approaches
使用可扩展的基于采样的动态规划和 Q 学习方法在不确定性下进行战略空中交通流量管理
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Junfei Xie;Yan Wan;F. Lewis - 通讯作者:
F. Lewis
Understanding Long-Term Adoption and Usability of Wearable Activity Trackers Among Active Older Adults
- DOI:
10.1007/978-3-030-22012-9_18 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:0
- 作者:
Byung Cheol Lee;Ajisafe, Toyin D.;Junfei Xie - 通讯作者:
Junfei Xie
Landing Trajectory Prediction for UAS Based on Generative Adversarial Network
基于生成对抗网络的无人机着陆轨迹预测
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jun Xiang;Junfei Xie;Jun Chen - 通讯作者:
Jun Chen
A Jump-Linear Model based Sensitivity Study for Optimal Air Traffic Flow Management under Weather Uncertainty
基于跳跃线性模型的天气不确定性下最佳空中交通流量管理的敏感性研究
- DOI:
10.2514/6.2015-1573 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yi Zhou;Junfei Xie;Y. Wan - 通讯作者:
Y. Wan
Distance Measure to Cluster Spatiotemporal Scenarios for Strategic Air Traffic Management
战略空中交通管理中聚类时空场景的距离测量
- DOI:
10.2514/1.i010353 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Junfei Xie;Y. Wan;Yi Zhou;S. Tien;Erik Vargo;C. Taylor;C. Wanke - 通讯作者:
C. Wanke
Junfei Xie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Junfei Xie', 18)}}的其他基金
Collaborative Research: Research Infrastructure: CCRI: ENS: Enhanced Open Networked Airborne Computing Platform
合作研究:研究基础设施:CCRI:ENS:增强型开放网络机载计算平台
- 批准号:
2235159 - 财政年份:2023
- 资助金额:
$ 5.09万 - 项目类别:
Standard Grant
CAREER: Towards Networked Airborne Computing in Uncertain Airspace: A Control and Networking Facilitated Distributed Computing Framework
职业:走向不确定空域的网络机载计算:控制和网络促进的分布式计算框架
- 批准号:
2048266 - 财政年份:2021
- 资助金额:
$ 5.09万 - 项目类别:
Continuing Grant
CI-New: Collaborative Research: Developing an Open Networked Airborne Computing Platform
CI-New:协作研究:开发开放式网络机载计算平台
- 批准号:
1953048 - 财政年份:2019
- 资助金额:
$ 5.09万 - 项目类别:
Standard Grant
EAGER: Real-Time: Collaborative Research: Unified Theory of Model-based and Data-driven Real-time Optimization and Control for Uncertain Networked Systems
EAGER:实时:协作研究:不确定网络系统基于模型和数据驱动的实时优化与控制的统一理论
- 批准号:
1839707 - 财政年份:2018
- 资助金额:
$ 5.09万 - 项目类别:
Standard Grant
CI-New: Collaborative Research: Developing an Open Networked Airborne Computing Platform
CI-New:协作研究:开发开放式网络机载计算平台
- 批准号:
1730589 - 财政年份:2017
- 资助金额:
$ 5.09万 - 项目类别:
Standard Grant
相似国自然基金
己酸二元发酵体系中甲烷菌促进己酸生成的机制研究
- 批准号:31501461
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
多维马氏体的数学建模及其高精度数值模拟方法
- 批准号:11171218
- 批准年份:2011
- 资助金额:45.0 万元
- 项目类别:面上项目
体数据表达与绘制的新方法研究
- 批准号:61170206
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
mRNA推断皮肤损伤时间的多因子与多因素实验研究
- 批准号:81172902
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
基于孢子捕捉器和实时定量PCR技术的空气中小麦白粉菌的监测技术研究
- 批准号:31171793
- 批准年份:2011
- 资助金额:54.0 万元
- 项目类别:面上项目
相似海外基金
EAGER: Building a Provable Differentially Private Real-time Data-blind ML Algorithm: A case study on Enhancing STEM Student Engagement in Online Learning
EAGER:构建可证明的差分隐私实时数据盲机器学习算法:关于增强 STEM 学生在线学习参与度的案例研究
- 批准号:
2329919 - 财政年份:2023
- 资助金额:
$ 5.09万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
- 批准号:
2405142 - 财政年份:2023
- 资助金额:
$ 5.09万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
- 批准号:
2151021 - 财政年份:2022
- 资助金额:
$ 5.09万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
- 批准号:
2151022 - 财政年份:2022
- 资助金额:
$ 5.09万 - 项目类别:
Standard Grant
EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Inoculation vs. education: the role of real time alerts and end-user overconfidence
EAGER:DCL:SaTC:实现跨学科协作:接种与教育:实时警报和最终用户过度自信的作用
- 批准号:
2210198 - 财政年份:2022
- 资助金额:
$ 5.09万 - 项目类别:
Standard Grant