EAGER: Joint Learning for Knowledge-Rich Coreference Resolution

EAGER:联合学习以解决知识丰富的共指问题

基本信息

  • 批准号:
    1147644
  • 负责人:
  • 金额:
    $ 13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-08-15 至 2014-01-31
  • 项目状态:
    已结题

项目摘要

This Early Grant for Exploratory Research seeks to investigate the viability of a knowledge-rich, joint-learning approach to coreference resolution, with the ultimate goal of advancing the state of the art in coreference resolution. Given recent advances in research on lexical semantics and discourse, and the development of large-scale lexical databases, the first objective of this grant is to investigate whether existing language technologies are mature enough to accurately extract semantic, discourse, and world knowledge from structured and unstructured data so that learning-based coreference systems can be significantly improved when such knowledge is employed.An assumption underlying the first objective is the use of a pipeline system architecture, where sophisticated linguistic information from various sources is computed prior to coreference resolution. While a pipeline architecture is popularly-used in coreference research, the errors made by the upstream components may propagate to the coreference component and adversely affect its performance. To address this problem, the second objective of this grant is to explore an approach in which multiple tasks in the pipeline are learned in a joint fashion. While most research on joint learning for language processing focuses on two tasks, this work seeks to take the challenge involved in joint learning to the next level by simultaneously learning a large number of tasks in semantics, discourse, and information extraction, which can all benefit from their interactions with each other and with coreference in the learning process.
这个探索性研究的早期补助金旨在研究知识丰富的联合学习方法对共指消解的可行性,最终目标是推进共指消解的最新技术水平。鉴于词汇语义和语篇研究的最新进展,以及大规模词汇数据库的发展,该资助的第一个目标是调查现有的语言技术是否足够成熟,可以准确地提取语义,语篇,以及来自结构化和非结构化数据的世界知识,当采用这种知识时,基于共指系统的共指系统可以得到显著的改进。第一个目标的基础假设是使用流水线系统架构,其中在共指消解之前计算来自各种源的复杂语言信息。流水线结构在共指研究中被广泛使用,但上游组件产生的错误可能会传播到共指组件并对其性能产生不利影响。为了解决这个问题,该补助金的第二个目标是探索一种方法,在这种方法中,管道中的多个任务以联合方式学习。虽然大多数关于语言处理联合学习的研究都集中在两个任务上,但这项工作旨在通过同时学习语义,话语和信息提取中的大量任务,将联合学习中所涉及的挑战提升到一个新的水平,这些任务都可以从学习过程中相互之间的交互和共指中受益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vincent Ng其他文献

Graph-Cut-Based Anaphoricity Determination for Coreference Resolution
  • DOI:
    10.3115/1620754.1620838
  • 发表时间:
    2009-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vincent Ng
  • 通讯作者:
    Vincent Ng
Weakly Supervised Part-of-Speech Tagging for Morphologically-Rich, Resource-Scarce Languages
针对形态丰富、资源稀缺的语言的弱监督词性标记
  • DOI:
    10.3115/1609067.1609107
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Hasan;Vincent Ng
  • 通讯作者:
    Vincent Ng
Normalization of informal text for text-to-speech
文本转语音的非正式文本规范化
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Liu;Vincent Ng;Deana Pennell
  • 通讯作者:
    Deana Pennell
The development and validation of a measure of character: The CIVIC
性格衡量标准的制定和验证:CIVIC
  • DOI:
    10.1080/17439760.2017.1291850
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vincent Ng;L. Tay;Lauren Kuykendall
  • 通讯作者:
    Lauren Kuykendall
Entity Coreference Resolution

Vincent Ng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vincent Ng', 18)}}的其他基金

Second Workshop on Coreference Resolution Beyond OntoNotes
OntoNotes 之外的第二届共指解析研讨会
  • 批准号:
    1734696
  • 财政年份:
    2017
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
EMNLP 2016 Student Scholarship Program
EMNLP 2016年学生奖学金计划
  • 批准号:
    1653286
  • 财政年份:
    2016
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
RI: Small: Fast, Scalable Joint Inference for NLP using Markov Logic
RI:小型:使用马尔可夫逻辑进行快速、可扩展的 NLP 联合推理
  • 批准号:
    1528037
  • 财政年份:
    2015
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
RI: Small: Semantics-Based, Weakly-Supervised Coreference Resolution
RI:小:基于语义的弱监督共指解析
  • 批准号:
    1219142
  • 财政年份:
    2012
  • 资助金额:
    $ 13万
  • 项目类别:
    Continuing Grant
RI-Small: Improving Machine Learning Approaches to Coreference Resolution
RI-Small:改进共指解析的机器学习方法
  • 批准号:
    0812261
  • 财政年份:
    2008
  • 资助金额:
    $ 13万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于双稳健共享参数Joint模型的脑卒中早期关键风险因素推断研究
  • 批准号:
    81803337
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: NCS-FR: DEJA-VU: Design of Joint 3D Solid-State Learning Machines for Various Cognitive Use-Cases
合作研究:NCS-FR:DEJA-VU:针对各种认知用例的联合 3D 固态学习机设计
  • 批准号:
    2319619
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Continuing Grant
Collaborative Research: Omnidirectional Perching on Dynamic Surfaces: Emergence of Robust Behaviors from Joint Learning of Embodied and Motor Control
合作研究:动态表面上的全方位栖息:从具身控制和运动控制的联合学习中出现鲁棒行为
  • 批准号:
    2230321
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Joint development of COIL, an output-specific medical English language learning model in a cross-reality space
联合开发跨现实空间中特定输出的医学英语学习模型 COIL
  • 批准号:
    23H00645
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: NCS-FR: DEJA-VU: Design of Joint 3D Solid-State Learning Machines for Various Cognitive Use-Cases
合作研究:NCS-FR:DEJA-VU:针对各种认知用例的联合 3D 固态学习机设计
  • 批准号:
    2319617
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Collaborative Research: NCS-FR: DEJA-VU: Design of Joint 3D Solid-State Learning Machines for Various Cognitive Use-Cases
合作研究:NCS-FR:DEJA-VU:针对各种认知用例的联合 3D 固态学习机设计
  • 批准号:
    2319618
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Continuing Grant
Collaborative Research: Omnidirectional Perching on Dynamic Surfaces: Emergence of Robust Behaviors from Joint Learning of Embodied and Motor Control
合作研究:动态表面上的全方位栖息:从具身控制和运动控制的联合学习中出现鲁棒行为
  • 批准号:
    2230320
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Collaborative Research: RI:Medium:Understanding Events from Streaming Video - Joint Deep and Graph Representations, Commonsense Priors, and Predictive Learning
协作研究:RI:Medium:理解流视频中的事件 - 联合深度和图形表示、常识先验和预测学习
  • 批准号:
    2348689
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Continuing Grant
Co-Designing Media to Foster Joint Peer-to-Peer Engagement, Promote Engineering Learning, and Expand Reach to Young Children
共同设计媒体以促进同伴间的联合参与、促进工程学习并扩大对幼儿的影响
  • 批准号:
    2314195
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Efficient estimation in a novel hybrid model combining deep learning and joint modeling of longitudinal and time-to-event analysis for multimodal health data
结合深度学习和多模态健康数据纵向和事件时间分析联合建模的新型混合模型的有效估计
  • 批准号:
    559863-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 13万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
A Development and Trial Educational Practice of Activity Model of Learning and Teaching Support Robot in Online Joint Class
在线联课学教辅助机器人活动模型的开发与试教实践
  • 批准号:
    22H01045
  • 财政年份:
    2022
  • 资助金额:
    $ 13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了