Collaborative Research: NCS-FR: DEJA-VU: Design of Joint 3D Solid-State Learning Machines for Various Cognitive Use-Cases
合作研究:NCS-FR:DEJA-VU:针对各种认知用例的联合 3D 固态学习机设计
基本信息
- 批准号:2319618
- 负责人:
- 金额:$ 109.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Modern computers have revolutionized a wide range of applications that require fast, large-scale arithmetic operations. However, today’s computers still perform poorly on ‘cognitive’ tasks – tasks that require knowledge building, learning from past experiences, and anticipating the future. This project aims to design a new class of computer chips – ‘Cognitive Computing Machines (C2M)’ – by leveraging advances in recent understanding of how the brain represents and computes information and the crucial insight to map complex signal routing, characteristic of brain structures, onto three-dimensional integrated chips. The inspiration for the project is the hippocampus, a brain structure known to be critical for performing these cognitive tasks. The project will model and quantify key information processing steps in the hippocampus. These key hippocampal functions will then be embedded on to solid-state computing chips through state-of-the-art hardware design techniques. A hippocampal-aware, hardware-aware, algorithmic framework will augment the chip design efforts to enable online learning and decision-making in resource constrained environments. The project has potential disruptive applications in the field of robotics and autonomous systems spanning industrial, consumer and defense sectors. Each participating investigator and institution are committed to support a wide range of training and mentoring programs, with a focus on students from groups underrepresented in science. Trainees involved in the project will receive rare cross-disciplinary training in neuroscience and engineering, providing a foundation for a wide variety of career trajectories. Further, the participating laboratories will disseminate project outcomes through scientific articles, public and conference presentations, and other outreach tools including project websites and joint curricular activities.The cognitive ability to use information from individual events to build knowledge and make context-appropriate decisions is integral to daily life in humans but poses a significant challenge for hardware and software systems. Decades of research has indicated that a brain structure called the hippocampus plays a crucial role in enabling context-appropriate decision-making. The goal of this project is to design a new class of computer chips (Cognitive Computing Machines or C2M) inspired from the cognitive functions of the hippocampus. The project leverages three significant and timely developments: (1) three-dimensional integration of chips, enabling novel routing techniques for spatio-temporal signals, (2) processing-in-memory technology, capable of complex dynamic analog on-chip processing, and (3) advances in the understanding of hippocampal mechanisms and dynamics supporting learning, memory, and decisions. Further, the designed in silico C2M will be augmented with rapid and robust decision-making through novel hippocampus-aware, hardware-aware learning algorithm for range of cognitive applications. The transformative potential of the project emerges from research conducted at three different levels of abstractions (threads) and directed towards a common goal: (1) neuroscience abstraction, as in identifying and answering key questions about organizational and functional principles of hippocampus; (2) hardware abstraction, as in functionally mimicking hippocampal computing attributes in 3D integrated circuits in a technology-friendly manner; and (3) algorithm abstraction, as in incorporating event-based predictions from the hippocampus-inspired chip with knowledge-based predictions for rapid and robust learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代计算机已经彻底改变了广泛的应用,需要快速,大规模的算术运算。然而,今天的计算机在“认知”任务上仍然表现不佳-这些任务需要知识构建,从过去的经验中学习,并预测未来。该项目旨在设计一种新的计算机芯片-“认知计算机器(C2M)”-通过利用最近对大脑如何表示和计算信息的理解以及将复杂信号路由(大脑结构的特征)映射到三维集成芯片上的关键洞察力。该项目的灵感来自海马体,这是一种已知对执行这些认知任务至关重要的大脑结构。该项目将对海马体中的关键信息处理步骤进行建模和量化。这些关键的海马功能将通过最先进的硬件设计技术嵌入到固态计算芯片上。一个可感知的、硬件感知的算法框架将增强芯片设计工作,以在资源受限的环境中实现在线学习和决策。该项目在机器人和自主系统领域具有潜在的颠覆性应用,涵盖工业、消费和国防领域。每个参与的研究者和机构都致力于支持广泛的培训和指导计划,重点是来自科学代表性不足的群体的学生。参与该项目的学员将接受罕见的神经科学和工程跨学科培训,为各种职业轨迹奠定基础。此外,参与实验室将通过科学文章、公开和会议演示以及其他外联工具(包括项目网站和联合课程活动)传播项目成果。使用来自单个事件的信息来构建知识并做出适合背景的决策的认知能力是人类日常生活不可或缺的,但对硬件和软件系统构成了重大挑战。几十年的研究表明,大脑中一种叫做海马体的结构在做出与情境相适应的决策方面起着至关重要的作用。该项目的目标是设计一种新的计算机芯片(认知计算机器或C2M),灵感来自海马体的认知功能。该项目利用了三个重要而及时的发展:(1)芯片的三维集成,使时空信号的新路由技术成为可能,(2)内存处理技术,能够进行复杂的动态模拟片上处理,以及(3)对支持学习,记忆和决策的海马机制和动力学的理解的进步。此外,计算机设计的C2M将通过新颖的校园感知,硬件感知学习算法来增强快速和强大的决策,用于各种认知应用。该项目的变革潜力来自于在三个不同层次的抽象(线程)上进行的研究,并指向一个共同的目标:(1)神经科学抽象,如识别和回答有关海马体组织和功能原理的关键问题;(2)硬件抽象,如以技术友好的方式在3D集成电路中功能性地模仿海马体计算属性;以及(3)算法抽象,如将基于事件的预测与基于知识的预测相结合,从而实现快速和强大的学习。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Norbert Fortin其他文献
Optimal Transport for Latent Integration with An Application to Heterogeneous Neuronal Activity Data
潜在整合的最佳传输与异质神经元活动数据的应用
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yubai Yuan;B. Shahbaba;Norbert Fortin;Keiland Cooper;Qing Nie;Annie Qu - 通讯作者:
Annie Qu
Norbert Fortin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Norbert Fortin', 18)}}的其他基金
Neural basis of the memory for sequences of events: A synergistic approach in rats and humans
事件序列记忆的神经基础:大鼠和人类的协同方法
- 批准号:
1439267 - 财政年份:2014
- 资助金额:
$ 109.63万 - 项目类别:
Continuing Grant
CAREER: Hippocampal and prefrontal mechanisms underlying the temporal context of episodic memory
职业:情景记忆时间背景下的海马和前额叶机制
- 批准号:
1150292 - 财政年份:2012
- 资助金额:
$ 109.63万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
- 批准号:
2409652 - 财政年份:2024
- 资助金额:
$ 109.63万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FR: DEJA-VU: Design of Joint 3D Solid-State Learning Machines for Various Cognitive Use-Cases
合作研究:NCS-FR:DEJA-VU:针对各种认知用例的联合 3D 固态学习机设计
- 批准号:
2319619 - 财政年份:2023
- 资助金额:
$ 109.63万 - 项目类别:
Continuing Grant
Collaborative Research: NCS-FO: Modified two-photon microscope with high-speed electrowetting array for imaging voltage transients in cerebellar molecular layer interneurons
合作研究:NCS-FO:带有高速电润湿阵列的改良双光子显微镜,用于对小脑分子层中间神经元的电压瞬变进行成像
- 批准号:
2319406 - 财政年份:2023
- 资助金额:
$ 109.63万 - 项目类别:
Continuing Grant
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
- 批准号:
2319450 - 财政年份:2023
- 资助金额:
$ 109.63万 - 项目类别:
Continuing Grant
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
- 批准号:
2319451 - 财政年份:2023
- 资助金额:
$ 109.63万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
- 批准号:
2319493 - 财政年份:2023
- 资助金额:
$ 109.63万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FR: DEJA-VU: Design of Joint 3D Solid-State Learning Machines for Various Cognitive Use-Cases
合作研究:NCS-FR:DEJA-VU:针对各种认知用例的联合 3D 固态学习机设计
- 批准号:
2319617 - 财政年份:2023
- 资助金额:
$ 109.63万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
- 批准号:
2319449 - 财政年份:2023
- 资助金额:
$ 109.63万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FO: A model-based approach to probe the role of spontaneous movements during decision-making
合作研究:NCS-FO:一种基于模型的方法,探讨自发运动在决策过程中的作用
- 批准号:
2350329 - 财政年份:2023
- 资助金额:
$ 109.63万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FO: Modified two-photon microscope with high-speed electrowetting array for imaging voltage transients in cerebellar molecular layer interneurons
合作研究:NCS-FO:带有高速电润湿阵列的改良双光子显微镜,用于对小脑分子层中间神经元的电压瞬变进行成像
- 批准号:
2319405 - 财政年份:2023
- 资助金额:
$ 109.63万 - 项目类别:
Standard Grant