Moduli Spaces for Rings and Ideals
环和理想的模空间
基本信息
- 批准号:1147782
- 负责人:
- 金额:$ 12.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-05-01 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator studies moduli spaces of finite, flat covers and line bundles of those covers. Important basic examples include orders in number fields (finite flat covers of the integers) and finite covers of the complex projective line. The methods involve working over an arbitrary base scheme, so for example one gets results about both the number theoretic and geometric examples above. The project is to find moduli spaces that have explicit descriptions and reasonable geometry so that they can be worked with concretely. Since the work of Gauss in 1801, polynomials have been use to study number systems that are bigger than the usual counting numbers 1,2,3.., For example, a larger number system might also include the square root of 2, which cannot be found among 1,2,3... When we include the square root of 2, it is a quadratic extension of the usual numbers, and if we had included the cube root of 2 it would have been a cubic extension of the usual numbers. This work tries to understand what the possible low degree extensions of the usual numbers are by working explicitly with polynomials that are related to the extensions. This then allows one to make computations regarding the larger number systems by reducing them to easier computations about polynomials.
研究者研究了有限平坦覆盖的模空间和这些覆盖的线丛。重要的基本例子包括数域中的序(整数的有限平坦覆盖)和复射影直线的有限覆盖。这些方法涉及处理任意基方案,因此,例如,可以得到关于上述数论和几何示例的结果。这个项目是寻找具有明确描述和合理几何的模空间,以便它们可以被具体地处理。自从1801年Gauss的工作以来,多项式被用来研究比通常的计数数1,2,3更大的数系。例如,更大的数系可能还包括2的平方根,这是在1,2,3之间找不到的。当我们包括2的平方根时,它是通常数字的二次扩展,如果我们包括2的立方根,它将是通常数字的三次扩展。这项工作试图通过显式地使用与扩展相关的多项式来理解通常数的可能的低次扩展是什么。这使得人们可以通过将较大的数系简化为关于多项式的更容易的计算来进行关于较大数系的计算。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Melanie Wood其他文献
Microglial activation in the early stages of Alzheimer trajectory is associated with higher grey matter and hippocampal volume
阿尔茨海默病轨迹早期阶段的小胶质细胞激活与较高的灰质和海马体积有关
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
G. D. Femminella;M. Dani;Melanie Wood;Zhen Fan;V. Calsolaro;R. Atkinson;R. Hinz;J. David;Brooks;P. Edison - 通讯作者:
P. Edison
Ambulatory Pain Management in the Pediatric Patient Population
- DOI:
10.1007/s11916-022-00999-y - 发表时间:
2022-02-07 - 期刊:
- 影响因子:3.500
- 作者:
Jodi-Ann Oliver;Lori-Ann Oliver;Nitish Aggarwal;Khushboo Baldev;Melanie Wood;Lovemore Makusha;Nalini Vadivelu;Lance Lichtor - 通讯作者:
Lance Lichtor
BIRS Workshop 11w5075: WIN2 – Women in Numbers 2, C. David (Concordia University), M. Lalín (Université de Montréal),
BIRS 研讨会 11w5075:WIN2 – 数字中的女性 2,C. David(康考迪亚大学)、M. Lalín(蒙特利尔大学),
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Melanie Wood - 通讯作者:
Melanie Wood
Melanie Wood的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Melanie Wood', 18)}}的其他基金
CAREER: Randomness in Number Theory and Beyond
职业:数论及其他领域的随机性
- 批准号:
2052036 - 财政年份:2020
- 资助金额:
$ 12.51万 - 项目类别:
Continuing Grant
CAREER: Randomness in Number Theory and Beyond
职业:数论及其他领域的随机性
- 批准号:
1952226 - 财政年份:2019
- 资助金额:
$ 12.51万 - 项目类别:
Continuing Grant
CAREER: Randomness in Number Theory and Beyond
职业:数论及其他领域的随机性
- 批准号:
1652116 - 财政年份:2017
- 资助金额:
$ 12.51万 - 项目类别:
Continuing Grant
Points on Curves Over Finite Fields and Motivic Stabilization
有限域上曲线上的点和动机稳定性
- 批准号:
1301690 - 财政年份:2013
- 资助金额:
$ 12.51万 - 项目类别:
Continuing Grant
相似海外基金
Moduli Spaces, Tautological Rings, and Theta Functions
模空间、同义反复环和 Theta 函数
- 批准号:
1802228 - 财政年份:2018
- 资助金额:
$ 12.51万 - 项目类别:
Standard Grant
Rings and compactifications associated with topological spaces
与拓扑空间相关的环和紧化
- 批准号:
7592-2000 - 财政年份:2004
- 资助金额:
$ 12.51万 - 项目类别:
Discovery Grants Program - Individual
Rings and compactifications associated with topological spaces
与拓扑空间相关的环和紧化
- 批准号:
7592-2000 - 财政年份:2003
- 资助金额:
$ 12.51万 - 项目类别:
Discovery Grants Program - Individual
Rings and compactifications associated with topological spaces
与拓扑空间相关的环和紧化
- 批准号:
7592-2000 - 财政年份:2002
- 资助金额:
$ 12.51万 - 项目类别:
Discovery Grants Program - Individual
Rings and compactifications associated with topological spaces
与拓扑空间相关的环和紧化
- 批准号:
7592-2000 - 财政年份:2001
- 资助金额:
$ 12.51万 - 项目类别:
Discovery Grants Program - Individual
Rings and compactifications associated with topological spaces
与拓扑空间相关的环和紧化
- 批准号:
7592-2000 - 财政年份:2000
- 资助金额:
$ 12.51万 - 项目类别:
Discovery Grants Program - Individual
Classification of the cohomology rings of finite Hopf spaces
有限Hopf空间上同调环的分类
- 批准号:
11640083 - 财政年份:1999
- 资助金额:
$ 12.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Sciences: Algebraic K-Theory of Rings and Spaces and Cyclic Homology
数学科学:环和空间的代数 K 理论以及循环同调
- 批准号:
8308248 - 财政年份:1983
- 资助金额:
$ 12.51万 - 项目类别:
Standard Grant