CAREER: Randomness in Number Theory and Beyond
职业:数论及其他领域的随机性
基本信息
- 批准号:1952226
- 负责人:
- 金额:$ 37.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2020-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will lead to a deeper understanding of the statistics of fundamental behaviors of numbers, including how numbers factor and how many solutions there are to given equations. The approach is to use random models to study these seemingly deterministic questions. This research will investigate how mysterious microlevel numerical structures aggregate into universal macrolevel patterns. A fundamental example of this micro-to-macro phenomenon is seen in the ubiquity of the bell curve, which describes many distributions seen in nature, even when they come from different sources. The project will help uncover the analog of the bell curve for fundamental behaviors of numbers.Specifically, the distribution of class groups of number fields and function fields will be studied using tools from probability, random groups, arithmetic geometry, algebraic geometry, topology, and number theory. The project will develop models of random groups that are good approximations for class groups and their non-abelian analogs, and determine the basic probabilistic structure of these models. Tools from algebraic geometry and topology will be used to prove that distributions of class groups of function fields have behavior that agrees with what is predicted by the models. This will exhibit new structure in the class groups of number fields and their non-abelian analogs.
这个项目将导致更深入地了解数字的基本行为的统计,包括数字如何因子以及给定方程有多少个解。方法是使用随机模型来研究这些看似确定性的问题。这项研究将探讨神秘的微观数值结构如何聚集成普遍的宏观模式。这种微观到宏观现象的一个基本例子是无处不在的钟形曲线,它描述了自然界中看到的许多分布,即使它们来自不同的来源。本课题将利用概率论、随机群、算术几何、代数几何、拓扑学、数论等工具,研究数域和函数域的类群分布,并通过数学形态学、数学形态 该项目将开发随机组模型,这些模型是类组及其非阿贝尔类似物的良好近似,并确定这些模型的基本概率结构。 代数几何和拓扑学的工具将被用来证明函数场的类群的分布具有与模型预测一致的行为。 这将在数域及其非阿贝尔类似物的类群中表现出新的结构。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Random integral matrices and the Cohen-Lenstra heuristics
- DOI:10.1353/ajm.2019.0008
- 发表时间:2015-04
- 期刊:
- 影响因子:1.7
- 作者:M. Wood
- 通讯作者:M. Wood
Nonabelian Cohen–Lenstra moments
- DOI:10.1215/00127094-2018-0037
- 发表时间:2017-02
- 期刊:
- 影响因子:2.5
- 作者:M. Wood;Philip Matchett Wood
- 通讯作者:M. Wood;Philip Matchett Wood
A heuristic for boundedness of ranks of elliptic curves
- DOI:10.4171/jems/893
- 发表时间:2016-02
- 期刊:
- 影响因子:2.6
- 作者:Jennifer Park;B. Poonen;J. Voight;M. Wood
- 通讯作者:Jennifer Park;B. Poonen;J. Voight;M. Wood
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Melanie Wood其他文献
Microglial activation in the early stages of Alzheimer trajectory is associated with higher grey matter and hippocampal volume
阿尔茨海默病轨迹早期阶段的小胶质细胞激活与较高的灰质和海马体积有关
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
G. D. Femminella;M. Dani;Melanie Wood;Zhen Fan;V. Calsolaro;R. Atkinson;R. Hinz;J. David;Brooks;P. Edison - 通讯作者:
P. Edison
Ambulatory Pain Management in the Pediatric Patient Population
- DOI:
10.1007/s11916-022-00999-y - 发表时间:
2022-02-07 - 期刊:
- 影响因子:3.500
- 作者:
Jodi-Ann Oliver;Lori-Ann Oliver;Nitish Aggarwal;Khushboo Baldev;Melanie Wood;Lovemore Makusha;Nalini Vadivelu;Lance Lichtor - 通讯作者:
Lance Lichtor
BIRS Workshop 11w5075: WIN2 – Women in Numbers 2, C. David (Concordia University), M. Lalín (Université de Montréal),
BIRS 研讨会 11w5075:WIN2 – 数字中的女性 2,C. David(康考迪亚大学)、M. Lalín(蒙特利尔大学),
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Melanie Wood - 通讯作者:
Melanie Wood
Melanie Wood的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Melanie Wood', 18)}}的其他基金
CAREER: Randomness in Number Theory and Beyond
职业:数论及其他领域的随机性
- 批准号:
2052036 - 财政年份:2020
- 资助金额:
$ 37.29万 - 项目类别:
Continuing Grant
CAREER: Randomness in Number Theory and Beyond
职业:数论及其他领域的随机性
- 批准号:
1652116 - 财政年份:2017
- 资助金额:
$ 37.29万 - 项目类别:
Continuing Grant
Points on Curves Over Finite Fields and Motivic Stabilization
有限域上曲线上的点和动机稳定性
- 批准号:
1301690 - 财政年份:2013
- 资助金额:
$ 37.29万 - 项目类别:
Continuing Grant
相似海外基金
Conference: 17th International Conference on Computability, Complexity and Randomness (CCR 2024)
会议:第十七届可计算性、复杂性和随机性国际会议(CCR 2024)
- 批准号:
2404023 - 财政年份:2024
- 资助金额:
$ 37.29万 - 项目类别:
Standard Grant
New Challenges in the Study of Propagation of Randomness for Nonlinear Evolution Equations
非线性演化方程随机传播研究的新挑战
- 批准号:
2400036 - 财政年份:2024
- 资助金额:
$ 37.29万 - 项目类别:
Standard Grant
Interplay between geometry and randomness in fitness landscapes for expanding populations
人口增长的健身景观中几何与随机性之间的相互作用
- 批准号:
EP/X040089/1 - 财政年份:2024
- 资助金额:
$ 37.29万 - 项目类别:
Research Grant
Development of self-organization model and verification of forecast accuracy of Baiu heavy rainfall systems based on the randomness of water content
基于含水量随机性的Baiu暴雨系统自组织模型建立及预报精度验证
- 批准号:
22KJ1845 - 财政年份:2023
- 资助金额:
$ 37.29万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Robust Quantum Randomness for Industry
工业领域强大的量子随机性
- 批准号:
10041956 - 财政年份:2023
- 资助金额:
$ 37.29万 - 项目类别:
Collaborative R&D
Randomness in High-Dimensional Combinatorics: Colorings, Robustness, and Statistics
高维组合中的随机性:着色、鲁棒性和统计
- 批准号:
2247078 - 财政年份:2023
- 资助金额:
$ 37.29万 - 项目类别:
Continuing Grant
AF: Small: The Power of Randomness in Decision and Verification
AF:小:决策和验证中随机性的力量
- 批准号:
2312540 - 财政年份:2023
- 资助金额:
$ 37.29万 - 项目类别:
Standard Grant
Structure versus Randomness in Algebraic Geometry and Additive Combinatorics
代数几何和加法组合中的结构与随机性
- 批准号:
2302988 - 财政年份:2023
- 资助金额:
$ 37.29万 - 项目类别:
Standard Grant
Taming the randomness of random lasers with reconfigurable active particle assemblies
利用可重构的活性粒子组件来驯服随机激光器的随机性
- 批准号:
2303189 - 财政年份:2023
- 资助金额:
$ 37.29万 - 项目类别:
Standard Grant
ASCENT: TUNA: TUnable randomness for NAtural computing
ASCENT:TUNA:TU 无法实现自然计算的随机性
- 批准号:
2230963 - 财政年份:2022
- 资助金额:
$ 37.29万 - 项目类别:
Standard Grant