Points on Curves Over Finite Fields and Motivic Stabilization
有限域上曲线上的点和动机稳定性
基本信息
- 批准号:1301690
- 负责人:
- 金额:$ 33.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project is to study the distribution of points on curves over a fixed finite field and stabilization of sequences of moduli spaces, especially of curves, in the Grothendieck ring of varieties. The question of distribution of points on curves in a family over a fixed finite field is quite mysterious, even on the heuristic level, but many recent developments allow interesting access to special cases. These cases can provide the groundwork for development of the general theory. Related questions of counting points on varieties over finite fields have recently been determined to reflect a deeper structure in the Grothendieck ring of varieties, which will be studied and further developed in this project.A basic question about an equation is: how many solutions does it have? Many equations naturally fall into families of similar equations, for example, quadratic equations are ones in which all terms have degree at most two. This project studies how answers to the question of "how many solutions?" vary within a family and what consistent patterns develop as the family gets more complicated. The project also involves mentoring undergraduates, supporting infrastructure for networking and mentoring of women in mathematics, dissemination of mathematical ideas to middle school students, high school students, college non-math majors, and the general public, and mentoring and training graduate students
该项目是研究在一个固定的有限域上的曲线上的点的分布和稳定的序列的模空间,特别是曲线,在Grothendieck环的品种。 在一个固定的有限域上,一个族中的曲线上的点的分布问题是相当神秘的,即使在启发式的水平上也是如此,但是最近的许多发展允许有趣的特殊情况。 这些案例可以为一般理论的发展提供基础。 有限域上簇上的点的计数问题反映了簇的Grothendieck环的一个更深层次的结构,本项目将对此进行进一步的研究和发展。方程的一个基本问题是:它有多少解? 许多方程自然属于相似方程族,例如,二次方程是所有项的次数最多为二的方程。 本项目研究如何回答“有多少个解决方案?“在一个家庭中各不相同,随着家庭变得更加复杂, 该项目还涉及指导本科生,支持网络基础设施和指导数学领域的妇女,向中学生、高中生、大学非数学专业学生和公众传播数学思想,指导和培训研究生
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Melanie Wood其他文献
Microglial activation in the early stages of Alzheimer trajectory is associated with higher grey matter and hippocampal volume
阿尔茨海默病轨迹早期阶段的小胶质细胞激活与较高的灰质和海马体积有关
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
G. D. Femminella;M. Dani;Melanie Wood;Zhen Fan;V. Calsolaro;R. Atkinson;R. Hinz;J. David;Brooks;P. Edison - 通讯作者:
P. Edison
Ambulatory Pain Management in the Pediatric Patient Population
- DOI:
10.1007/s11916-022-00999-y - 发表时间:
2022-02-07 - 期刊:
- 影响因子:3.500
- 作者:
Jodi-Ann Oliver;Lori-Ann Oliver;Nitish Aggarwal;Khushboo Baldev;Melanie Wood;Lovemore Makusha;Nalini Vadivelu;Lance Lichtor - 通讯作者:
Lance Lichtor
BIRS Workshop 11w5075: WIN2 – Women in Numbers 2, C. David (Concordia University), M. Lalín (Université de Montréal),
BIRS 研讨会 11w5075:WIN2 – 数字中的女性 2,C. David(康考迪亚大学)、M. Lalín(蒙特利尔大学),
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Melanie Wood - 通讯作者:
Melanie Wood
Melanie Wood的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Melanie Wood', 18)}}的其他基金
CAREER: Randomness in Number Theory and Beyond
职业:数论及其他领域的随机性
- 批准号:
2052036 - 财政年份:2020
- 资助金额:
$ 33.8万 - 项目类别:
Continuing Grant
CAREER: Randomness in Number Theory and Beyond
职业:数论及其他领域的随机性
- 批准号:
1952226 - 财政年份:2019
- 资助金额:
$ 33.8万 - 项目类别:
Continuing Grant
CAREER: Randomness in Number Theory and Beyond
职业:数论及其他领域的随机性
- 批准号:
1652116 - 财政年份:2017
- 资助金额:
$ 33.8万 - 项目类别:
Continuing Grant
相似海外基金
Galois module theory for curves over finite fields
有限域上曲线的伽罗瓦模理论
- 批准号:
2751003 - 财政年份:2022
- 资助金额:
$ 33.8万 - 项目类别:
Studentship
Semistable Types of Hyperelliptic Curves Over Local Fields of Even Residue Characteristic
偶数残差特征场上超椭圆曲线的半稳定类型
- 批准号:
575512-2022 - 财政年份:2022
- 资助金额:
$ 33.8万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Arakelov geometry over adelic curves
adelic 曲线上的 Arakelov 几何
- 批准号:
21K03203 - 财政年份:2021
- 资助金额:
$ 33.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Modularity of elliptic curves over imaginary quadratic fields
虚二次域上椭圆曲线的模性
- 批准号:
565670-2021 - 财政年份:2021
- 资助金额:
$ 33.8万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Mahler measure and curves over finite fields
有限域上的马勒测量和曲线
- 批准号:
355412-2013 - 财政年份:2021
- 资助金额:
$ 33.8万 - 项目类别:
Discovery Grants Program - Individual
Study of the class group in the class field theory for curves over local fields
局部域曲线类域论中的类群研究
- 批准号:
20K03536 - 财政年份:2020
- 资助金额:
$ 33.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hilbert-Samuel formula over adelic curves
adelic 曲线上的 Hilbert-Samuel 公式
- 批准号:
20J20125 - 财政年份:2020
- 资助金额:
$ 33.8万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Mahler measure and curves over finite fields
有限域上的马勒测量和曲线
- 批准号:
355412-2013 - 财政年份:2020
- 资助金额:
$ 33.8万 - 项目类别:
Discovery Grants Program - Individual
Elliptic Curves and Cohomological Automorphic Forms over CM Fields
CM 域上的椭圆曲线和上同调自同构
- 批准号:
1902155 - 财政年份:2019
- 资助金额:
$ 33.8万 - 项目类别:
Continuing Grant
Mahler measure and curves over finite fields
有限域上的马勒测量和曲线
- 批准号:
355412-2013 - 财政年份:2019
- 资助金额:
$ 33.8万 - 项目类别:
Discovery Grants Program - Individual