CAREER: Advancing Multidimensional Data Science via New Algebraic Models and Scalable Algorithms
职业:通过新的代数模型和可扩展算法推进多维数据科学
基本信息
- 批准号:1553075
- 负责人:
- 金额:$ 52.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-15 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Building upon the rapid advancements in monitoring, networking and sensing technologies, most modern data collected are inherently multidimensional in nature, that is, each datum is influenced by a variety of factors. For example, a pixel in a remote sensing video is a function of time, color (wavelength) and spatial location. Another contemporary example comes from the widely used rating and recommendation systems, where a rating depends on the user, user demographic, product being rated and time. In fact, this is the case for numerous other applications such as cellular network performance statistics, geophysical systems for earth sciences, and education statistics in interactive learning and collaboration environments. This research addresses the need to advance data science for reliable and scalable information acquisition and processing for these complex and large-scale multidimensional data. In particular, the research builds and investigates a novel linear and multilinear algebraic framework to model multidimensional data. Using this framework one can tap into the well-developed body of vector space methods and adapt them to process multidimensional data in a principled manner to realize orders of magnitude performance gains over current methods. The research also addresses the challenges, which arise in deploying the framework for large-scale applications and investigates numerical and memory efficient algorithms. Integration of research and education is enabled through new cross-cutting curriculum development, continued undergraduate mentoring, and through integration of the research outcomes with existing undergraduate curriculum. The broader impacts are realized through a number of collaborative efforts involving, Tufts Interactive Learning and Collaboration Environment (InterLACE) program, Brigham and Women?s Hospital and AT&T research.
在监测、联网和传感技术迅速发展的基础上,所收集的大多数现代数据本质上都是多层面的,也就是说,每一个数据都受到各种因素的影响。例如,遥感视频中的像素是时间、颜色(波长)和空间位置的函数。另一个当代的例子来自广泛使用的评级和推荐系统,其中评级取决于用户、用户人口统计、被评级的产品和时间。事实上,这是许多其他应用程序的情况,如蜂窝网络性能统计,地球科学的地球物理系统,以及互动学习和协作环境中的教育统计。这项研究解决了推进数据科学的需要,为这些复杂和大规模的多维数据提供可靠和可扩展的信息采集和处理。特别是,研究建立和调查一个新的线性和多线性代数框架来建模多维数据。使用这个框架,可以利用良好的向量空间方法的主体,并使它们以原则性的方式处理多维数据,以实现比当前方法多几个数量级的性能增益。 该研究还解决了在部署大规模应用程序的框架中出现的挑战,并研究了数值和内存有效的算法。研究和教育的整合是通过新的跨领域课程开发,继续本科生辅导,并通过研究成果与现有的本科课程整合。更广泛的影响是通过一些合作努力实现的,涉及,塔夫茨互动学习和协作环境(InterLACE)计划,布里格姆和妇女?s医院和AT T研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shuchin Aeron其他文献
On The Failure of Invariant Risk Minimization and an Effective fix via Classification Error Control
不变风险最小化的失败以及通过分类错误控制的有效修复
- DOI:
10.1109/mlsp55844.2023.10286000 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Thuan Q. Nguyen;matthias. scheutz;Shuchin Aeron - 通讯作者:
Shuchin Aeron
On neural and dimensional collapse in supervised and unsupervised contrastive learning with hard negative sampling
关于硬负采样监督和无监督对比学习中的神经和维度崩溃
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Ruijie Jiang;Thuan Q. Nguyen;Shuchin Aeron;P. Ishwar - 通讯作者:
P. Ishwar
Easy Variational Inference for Categorical Models via an Independent Binary Approximation
通过独立二元近似对分类模型进行简单的变分推理
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Michael T. Wojnowicz;Shuchin Aeron;Eric L. Miller;Michael C. Hughes - 通讯作者:
Michael C. Hughes
Conditional entropy minimization principle for learning domain invariant representation features
学习域不变表示特征的条件熵最小原理
- DOI:
10.1109/icpr56361.2022.9956548 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Thuan Q. Nguyen;Boyang Lyu;P. Ishwar;matthias. scheutz;Shuchin Aeron - 通讯作者:
Shuchin Aeron
Data Privacy and Protection on Deep Leakage from Gradients by Layer-Wise Pruning
通过分层剪枝实现梯度深度泄漏的数据隐私和保护
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Liu;Bryan Liu;T. Koike;Ye Wang;Kyeong Jin Kim;Matthew Brand;Shuchin Aeron;K. Parsons - 通讯作者:
K. Parsons
Shuchin Aeron的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shuchin Aeron', 18)}}的其他基金
Optimal sampling and recovery for multilinear signals and systems
多线性信号和系统的最佳采样和恢复
- 批准号:
1319653 - 财政年份:2013
- 资助金额:
$ 52.62万 - 项目类别:
Standard Grant
相似海外基金
Advancing Governance and Resilience for Climate Adaptation through Cultural Heritage (AGREE)
通过文化遗产促进气候适应的治理和抵御能力(同意)
- 批准号:
AH/Z000017/1 - 财政年份:2024
- 资助金额:
$ 52.62万 - 项目类别:
Research Grant
Advancing Child and Youth-led Climate Change Education with Country
与国家一起推进儿童和青少年主导的气候变化教育
- 批准号:
DP240100968 - 财政年份:2024
- 资助金额:
$ 52.62万 - 项目类别:
Discovery Projects
Governing Sustainable Futures: Advancing the use of Participatory Mechanisms for addressing Place-based Contestations of Sustainable Living
治理可持续未来:推进利用参与机制来解决基于地方的可持续生活竞赛
- 批准号:
ES/Z502789/1 - 财政年份:2024
- 资助金额:
$ 52.62万 - 项目类别:
Research Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342498 - 财政年份:2024
- 资助金额:
$ 52.62万 - 项目类别:
Standard Grant
HSI Implementation and Evaluation Project: Green Chemistry: Advancing Equity, Relevance, and Environmental Justice
HSI 实施和评估项目:绿色化学:促进公平、相关性和环境正义
- 批准号:
2345355 - 财政年份:2024
- 资助金额:
$ 52.62万 - 项目类别:
Continuing Grant
AUC-GRANTED: Advancing Transformation of the Research Enterprise through Shared Resource Support Model for Collective Impact and Synergistic Effect.
AUC 授予:通过共享资源支持模型实现集体影响和协同效应,推进研究企业转型。
- 批准号:
2341110 - 财政年份:2024
- 资助金额:
$ 52.62万 - 项目类别:
Cooperative Agreement
ALPACA - Advancing the Long-range Prediction, Attribution, and forecast Calibration of AMOC and its climate impacts
APACA - 推进 AMOC 及其气候影响的长期预测、归因和预报校准
- 批准号:
2406511 - 财政年份:2024
- 资助金额:
$ 52.62万 - 项目类别:
Standard Grant
Planning: Advancing Discovery on a Sustainable National Research Enterprise
规划:推进可持续国家研究企业的发现
- 批准号:
2412406 - 财政年份:2024
- 资助金额:
$ 52.62万 - 项目类别:
Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
- 批准号:
2414607 - 财政年份:2024
- 资助金额:
$ 52.62万 - 项目类别:
Standard Grant
Photonic-Enabled THz Duplex Metasurface: Advancing Communication and Sensing
光子太赫兹双工超表面:推进通信和传感
- 批准号:
24K17324 - 财政年份:2024
- 资助金额:
$ 52.62万 - 项目类别:
Grant-in-Aid for Early-Career Scientists