CAREER: New Topics in Functional Data Analysis

职业:函数数据分析的新主题

基本信息

  • 批准号:
    1149415
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-06-01 至 2013-02-28
  • 项目状态:
    已结题

项目摘要

Functional data are random vectors in a functional space, which are usually observed on discrete points and measured with error. Functional data are also deeply connected to other types of correlated data, such as spatial data, since they can both be modeled as stochastic processes. In the proposed research, the investigator will broaden the applications of functional data analysis by proposing a new functional data approach to model spatio-temporal point pattern data from disease surveillance applications, where the spatio-temporal random effects are modeled as latent functional processes. Motivated by scientific problems in colon carcinogenesis experiments and hypertension studies, the investigator proposes new dimension reduction methods, which are widely applicable to semiparametric regression problems with functional predictors. The investigator proposes new estimation procedures based on spline approximation and roughness penalties, and will also investigate the model selection and inference problems related to these methods. The investigator also proposes to model longitudinal clinical trial data by the functional analysis of covariance models, where different treatment effects are represented by nonparametric functions in time. The proposed nonparametric hypothesis test can be used to detect the treatment effects. Specifically, the investigator will study the effect of the within-subject correlation on the power of the test.The proposed functional data approach to disease surveillance data will help to model the relationship between disease occurrence and some environmental variables (such as pollution level), estimate the time trend in the disease rate, and predict the unknown risk factors represented by latent random effects. The results will help disease control agencies and local officials to gain better understanding of the disease risk and develop better public health policies, such as emission or water quality control policies. The proposed dimension reduction methods provide the much needed statistical tools in the semiparametric regression problems in colon carcinogenesis and hypertension studies. The proposed nonparametric hypothesis testing procedure for functional analysis of covariance models answers a fundamental question in clinical trials, which is to compare the effectiveness of different treatments. The investigator will provide free and user-friendly software to scientific researchers and incorporate his research activity with graduate education. To further disseminate the research results and motivate new ideas, the investigator will develop a new course on functional data analysis and organize a research workshop.
函数数据是函数空间中的随机向量,通常在离散点上观察并测量误差。函数数据也与其他类型的相关数据(如空间数据)紧密相连,因为它们都可以建模为随机过程。在拟议的研究中,研究者将扩大功能数据分析的应用,提出一种新的功能数据方法来模拟时空点模式数据的疾病监测应用,其中时空随机效应建模为潜在的功能过程。受结肠癌发生实验和高血压研究中的科学问题的启发,研究者提出了新的降维方法,该方法广泛适用于具有函数预测因子的半参数回归问题。调查员提出了新的估计程序的基础上样条近似和粗糙度的处罚,也将调查模型的选择和推理问题,这些方法。研究者还建议通过协方差模型的函数分析对纵向临床试验数据进行建模,其中不同的治疗效果由时间上的非参数函数表示。提出的非参数假设检验可用于检测治疗效果。具体而言,研究者将研究受试者内相关性对检验功效的影响,所提出的疾病监测数据的函数数据方法将有助于建立疾病发生与某些环境变量(如污染水平)之间的关系模型,估计疾病发生率的时间趋势,并预测由潜在随机效应代表的未知风险因素。研究结果将有助于疾病控制机构和地方官员更好地了解疾病风险,并制定更好的公共卫生政策,如排放或水质控制政策。所提出的降维方法为结肠癌和高血压研究中的半参数回归问题提供了急需的统计工具。本文提出的协方差函数分析模型的非参数假设检验方法回答了临床试验中的一个基本问题,即比较不同治疗方法的有效性。研究员将向科研人员提供免费和用户友好的软件,并将其研究活动与研究生教育结合起来。为了进一步传播研究成果和激发新的想法,研究人员将开发一个新的功能数据分析课程,并组织一个研究讲习班。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yehua Li其他文献

Functional Data Modeling and Hypothesis Testing for Longitudinal Alzheimer Genome-Wide Association Studies
纵向阿尔茨海默病全基因组关联研究的功能数据建模和假设检验
Topics in functional data analysis with biological applications
功能数据分析与生物应用的主题
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yehua Li
  • 通讯作者:
    Yehua Li
Improving cure performance of Sisub3/subNsub4/sub suspension with a high refractive index resin for stereolithography-based additive manufacturing
  • DOI:
    10.1016/j.ceramint.2022.01.124
  • 发表时间:
    2022-05-01
  • 期刊:
  • 影响因子:
    5.600
  • 作者:
    Wenjing Zou;Ping Yang;Lifu Lin;Yehua Li;Shanghua Wu
  • 通讯作者:
    Shanghua Wu
A Green-Low-Cost Rechargeable Aqueous Zinc-ion Battery Using Hollow Porous Spinel ZnMn2O4 as the Cathode Material
以空心多孔尖晶石ZnMn2O4为正极材料的绿色低成本可充电水系锌离子电池
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xianwen Wu;Yanhong Xiang;Qingjing Peng;Xiangsi Wu;Yehua Li;Fang Tang;Runci Song;Zhixiong Liu;Zeqiang He;Xianming Wu
  • 通讯作者:
    Xianming Wu
Isorhamnetin Enhances the Radiosensitivity of A549 Cells Through Interleukin-13 and the NF-κB Signaling Pathway
  • DOI:
    doi: 10.3389/fphar.2020.610772
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Yurong Du;Cong Jia;Yan Liu;Yehua Li;Jufang Wang;Kun Sun
  • 通讯作者:
    Kun Sun

Yehua Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yehua Li', 18)}}的其他基金

CAREER: New Topics in Functional Data Analysis
职业:函数数据分析的新主题
  • 批准号:
    1317118
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
"Collaborative Research: Regression Problems in Functional Data Analysis"
“协作研究:函数数据分析中的回归问题”
  • 批准号:
    0806131
  • 财政年份:
    2008
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant

相似海外基金

SEER TRAINING WEBSITE, NEW DATA ITEM FEASIBILITY STUDY, AND SEER ADVANCED TOPICS FOR REGISTRY PROFESSIONALS WORKSHOP TECHNICAL AND LOGISTICAL SUPPORT
SEER 培训网站、新数据项可行性研究以及注册管理机构专业人员研讨会的 SEER 高级主题研讨会技术和后勤支持
  • 批准号:
    10974252
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Topics in Vortex Dynamics: Extreme Events, Optimal Closures and New Equilibrium Solutions
涡动力学主题:极端事件、最优闭合和新的平衡解
  • 批准号:
    RGPIN-2020-05710
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in Vortex Dynamics: Extreme Events, Optimal Closures and New Equilibrium Solutions
涡动力学主题:极端事件、最优闭合和新的平衡解
  • 批准号:
    RGPIN-2020-05710
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in Vortex Dynamics: Extreme Events, Optimal Closures and New Equilibrium Solutions
涡动力学主题:极端事件、最优闭合和新的平衡解
  • 批准号:
    RGPIN-2020-05710
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
SEER TRAINING WEBSITE TECHNICAL SUPPORT, NEW DATA ITEM FEASIBILITY, AND WORKSHOPS FOR ADVANCED TOPICS FOR CANCER REGISTRARS
SEER 培训网站技术支持、新数据项可行性以及癌症登记员高级主题研讨会
  • 批准号:
    10291944
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
Technical Support for the SEER Training Website (STW), New Data Item Feasibility, and Workshops for Advanced Topics for Cancer Registrars
为 SEER 培训网站 (STW)、新数据项可行性以及癌症登记员高级主题研讨会提供技术支持
  • 批准号:
    10027155
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
Topics in Applied Nonlinear Analysis: Recent Advances and New Trends
应用非线性分析主题:最新进展和新趋势
  • 批准号:
    1601475
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Special Topics in Dynamical Systems: A New Mathematical Framework for the Design of Switching and Continuous Control Strategies
动力系统专题:切换和连续控制策略设计的新数学框架
  • 批准号:
    1436856
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: New Topics in Functional Data Analysis
职业:函数数据分析的新主题
  • 批准号:
    1317118
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Topics in the Study of Fluctuations: Business Cycles and Household Formation and Corner Solutions in New Keynesian Models
波动研究主题:新凯恩斯主义模型中的经济周期和家庭形成及角点解决方案
  • 批准号:
    1156228
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了