"Collaborative Research: Regression Problems in Functional Data Analysis"

“协作研究:函数数据分析中的回归问题”

基本信息

  • 批准号:
    0806131
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-06-01 至 2012-07-31
  • 项目状态:
    已结题

项目摘要

Modern data collection methods are now frequently returning observations that could be viewed as the results of digitized recording or sampling from random functions. This project investigates regression problems for which the response is scalar but some of the predictors are functional. The general goal is to gain understanding on the inference of the models based on partially observed and error-contaminated functional data. Distinctions will be made between dense functional data, usually obtained from images, and sparse functional data, usually obtained from longitudinal studies. The specific topics include the consideration of (i) a functional generalized linear model for dense functional data using a penalized likelihood approach, (ii) dimension reduction methodologies based on sliced inverse regression and sliced average variance estimation, and (iii) a functional generalized linear model for sparse functional data using an approximated quasi-likelihood approach. New approaches will be proposed in the consideration of these problems, and asymptotic theories will be proved to validate the approaches. The sparse functional generalized linear model will be considered in a framework of joint modeling between a longitudinal life style profile and an endpoint health outcome. This involves the study of a new type of error-in-variable problem, which is expected to extend the horizon of longitudinal-data modeling.An important current focal point of statistical research is the so-called high-dimensional data analysis. Indeed, high-dimensional data are a fact of life. This is evidenced by our increasing need for larger storage devices on our computers. Roughly speaking, functional data are high-dimensional data which can be approximated by smooth curves or functions. Such data are abundant in scientific investigations, and it is of crucial importance to be able to effectively analyze such data. The PI will investigate approaches that will fundamentally contribute to the practice of functional data analysis. Direct applications of the research can be found in areas including image analysis, bioinformatics, and medicine. Research-level classes on functional data analysis based on this research will be offered at both University of Georgia and University of Michigan.
Modern data collection methods are now frequently returning observations that could be viewed as the results of digitized recording or sampling from random functions. This project investigates regression problems for which the response is scalar but some of the predictors are functional. The general goal is to gain understanding on the inference of the models based on partially observed and error-contaminated functional data. Distinctions will be made between dense functional data, usually obtained from images, and sparse functional data, usually obtained from longitudinal studies. The specific topics include the consideration of (i) a functional generalized linear model for dense functional data using a penalized likelihood approach, (ii) dimension reduction methodologies based on sliced inverse regression and sliced average variance estimation, and (iii) a functional generalized linear model for sparse functional data using an approximated quasi-likelihood approach. New approaches will be proposed in the consideration of these problems, and asymptotic theories will be proved to validate the approaches. The sparse functional generalized linear model will be considered in a framework of joint modeling between a longitudinal life style profile and an endpoint health outcome. This involves the study of a new type of error-in-variable problem, which is expected to extend the horizon of longitudinal-data modeling.An important current focal point of statistical research is the so-called high-dimensional data analysis. Indeed, high-dimensional data are a fact of life. This is evidenced by our increasing need for larger storage devices on our computers. Roughly speaking, functional data are high-dimensional data which can be approximated by smooth curves or functions. Such data are abundant in scientific investigations, and it is of crucial importance to be able to effectively analyze such data. The PI will investigate approaches that will fundamentally contribute to the practice of functional data analysis. Direct applications of the research can be found in areas including image analysis, bioinformatics, and medicine. Research-level classes on functional data analysis based on this research will be offered at both University of Georgia and University of Michigan.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yehua Li其他文献

Functional Data Modeling and Hypothesis Testing for Longitudinal Alzheimer Genome-Wide Association Studies
纵向阿尔茨海默病全基因组关联研究的功能数据建模和假设检验
Topics in functional data analysis with biological applications
功能数据分析与生物应用的主题
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yehua Li
  • 通讯作者:
    Yehua Li
Improving cure performance of Sisub3/subNsub4/sub suspension with a high refractive index resin for stereolithography-based additive manufacturing
  • DOI:
    10.1016/j.ceramint.2022.01.124
  • 发表时间:
    2022-05-01
  • 期刊:
  • 影响因子:
    5.600
  • 作者:
    Wenjing Zou;Ping Yang;Lifu Lin;Yehua Li;Shanghua Wu
  • 通讯作者:
    Shanghua Wu
A Green-Low-Cost Rechargeable Aqueous Zinc-ion Battery Using Hollow Porous Spinel ZnMn2O4 as the Cathode Material
以空心多孔尖晶石ZnMn2O4为正极材料的绿色低成本可充电水系锌离子电池
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xianwen Wu;Yanhong Xiang;Qingjing Peng;Xiangsi Wu;Yehua Li;Fang Tang;Runci Song;Zhixiong Liu;Zeqiang He;Xianming Wu
  • 通讯作者:
    Xianming Wu
Isorhamnetin Enhances the Radiosensitivity of A549 Cells Through Interleukin-13 and the NF-κB Signaling Pathway
  • DOI:
    doi: 10.3389/fphar.2020.610772
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Yurong Du;Cong Jia;Yan Liu;Yehua Li;Jufang Wang;Kun Sun
  • 通讯作者:
    Kun Sun

Yehua Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yehua Li', 18)}}的其他基金

CAREER: New Topics in Functional Data Analysis
职业:函数数据分析的新主题
  • 批准号:
    1317118
  • 财政年份:
    2012
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
CAREER: New Topics in Functional Data Analysis
职业:函数数据分析的新主题
  • 批准号:
    1149415
  • 财政年份:
    2012
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: New Regression Models and Methods for Studying Multiple Categorical Responses
合作研究:研究多重分类响应的新回归模型和方法
  • 批准号:
    2415067
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Collaborative Research: Multiple Hypothesis Testing on the Regression Analysis
合作研究:回归分析的多重假设检验
  • 批准号:
    2311216
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: Multiple Hypothesis Testing on the Regression Analysis
合作研究:回归分析的多重假设检验
  • 批准号:
    2311215
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: Inference and Decentralized Computing for Quantile Regression and Other Non-Smooth Methods
合作研究:分位数回归和其他非平滑方法的推理和分散计算
  • 批准号:
    2401268
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: New Regression Models and Methods for Studying Multiple Categorical Responses
合作研究:研究多重分类响应的新回归模型和方法
  • 批准号:
    2113589
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Collaborative Research: Inference and Decentralized Computing for Quantile Regression and Other Non-Smooth Methods
合作研究:分位数回归和其他非平滑方法的推理和分散计算
  • 批准号:
    2113346
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: Inference and Decentralized Computing for Quantile Regression and Other Non-Smooth Methods
合作研究:分位数回归和其他非平滑方法的推理和分散计算
  • 批准号:
    2113409
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: New Regression Models and Methods for Studying Multiple Categorical Responses
合作研究:研究多重分类响应的新回归模型和方法
  • 批准号:
    2113590
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Machine Learning Models for Function-on-Function Regression
合作研究:FET:小型:函数对函数回归的机器学习模型
  • 批准号:
    2007418
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Machine Learning Models for Function-on-Function Regression
合作研究:FET:小型:函数对函数回归的机器学习模型
  • 批准号:
    2007903
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了