Special Topics in Dynamical Systems: A New Mathematical Framework for the Design of Switching and Continuous Control Strategies
动力系统专题:切换和连续控制策略设计的新数学框架
基本信息
- 批准号:1436856
- 负责人:
- 金额:$ 18.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Special Topics in Dynamical Systems: A New Mathematical Framework for the Design of Switching and Continuous Control StrategiesResearchers often change a physical process by manipulating an external parameter to get the response they desire. It is hard to create a controller that can continuously change the external parameter to get the desired results, so often controllers have only a limited amount of options. This limited option system is called a switching control. For example, in an anti-lock braking system, the controller can either open or close valves completely to relieve pressure in the brakes rather than by degrees. While the mathematics of each of these stages is simple, the design of interplay between the two valves is a challenging mathematical problem. This project provides the knowledge that engineers will use when designing switching control strategy that move the dynamics toward a required robust regime. Not only will this project improve designs for simple systems like anti-lock braking systems, but also in complex systems like a robot walking on two legs. When a robot walks on two legs, it must be able to change its center of mass, alternate leg and knee motion and account for the nearly infinite number of repeated collisions the feet have with the ground. In addition to implications in the robotics and automotive industry, the theory developed in this project is relevant in fluid mechanics (wind and river flow, where the control is continuous, but nonsmooth), ecology (grazing management), and medicine (intermittent therapies, such as hormone therapies) where, as in robotics, the systems are complex. This project offers training for mathematics students interested in collaboration with researchers in other fields. The project will investigate the intrinsically nonsmooth (i.e. new) aspects of the dynamics of differential equations with nondifferentiable right-hand terms. The current theory is incapable to predict the emergence (bifurcation) of complex oscillations, if the points of discontinuity of the right-hand side (switchings) form discontinuous manifolds, if the trajectories feature infinite number of discontinuities (collisions) in finite time (chattering), if a trajectory develops into a funnel of curves over time (i.e. makes long-term prediction impossible), or if one smooths the discontinuities of the model (i.e. introduces the slow-fast dynamics). These four mechanisms describe the four objectives of the project because they are the four central routes for intrinsically nonsmooth attractive regimes to occur in nonsmooth control applications. To achieve the goal, such chapters of the field as dimension reduction, normal forms and bifurcation theory will be significantly advanced.
动力系统专题:开关和连续控制系统设计的新数学框架研究人员经常通过操纵外部参数来改变物理过程,以获得他们想要的响应。很难创建一个可以连续改变外部参数以获得所需结果的控制器,因此控制器通常只有有限的选项。这种有限的选择系统被称为切换控制。例如,在防抱死制动系统中,控制器可以完全打开或关闭阀门以释放制动器中的压力,而不是逐步释放。虽然这些阶段中的每一个的数学是简单的,但是两个阀之间的相互作用的设计是具有挑战性的数学问题。该项目提供的知识,工程师将使用时,设计切换控制策略,朝着所需的鲁棒政权的动态。该项目不仅将改进防抱死制动系统等简单系统的设计,还将改进两条腿行走的机器人等复杂系统的设计。当机器人用两条腿走路时,它必须能够改变它的质心,交替的腿和膝盖运动,并考虑到脚与地面几乎无限次的重复碰撞。除了在机器人和汽车行业的影响,在这个项目中开发的理论是相关的流体力学(风和河流,其中控制是连续的,但不平滑),生态学(放牧管理)和医学(间歇性治疗,如激素治疗),在机器人,系统是复杂的。该项目为有兴趣与其他领域的研究人员合作的数学学生提供培训。该项目将研究具有不可微右手项的微分方程动力学的内在非光滑(即新)方面。目前的理论无法预测(分叉)复杂的振荡,如果点的不连续的右手边(切换)形成不连续流形,如果轨迹具有无限数量的不连续性(碰撞)在有限时间内(喋喋不休),如果一个轨迹随着时间的推移发展成一个漏斗形的曲线,(即,使得长期预测不可能),或者如果平滑模型的不连续性(即,引入慢-快动态)。这四个机制描述了该项目的四个目标,因为它们是四个中心路线的内在非光滑吸引机制发生在非光滑控制应用。为了实现这一目标,降维,规范形和分歧理论等章节的领域将显着推进。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Global stability of almost periodic solutions to monotone sweeping processes and their response to non-monotone perturbations
- DOI:10.1016/j.nahs.2018.05.007
- 发表时间:2017-04
- 期刊:
- 影响因子:0
- 作者:M. Kamenskiĭ;O. Makarenkov;Lakmi Niwanthi Wadippuli;Paul Raynaud de Fitte
- 通讯作者:M. Kamenskiĭ;O. Makarenkov;Lakmi Niwanthi Wadippuli;Paul Raynaud de Fitte
Dwell time for local stability of switched affine systems with application to non-spiking neuron models
- DOI:10.1016/j.aml.2018.06.026
- 发表时间:2018-12-01
- 期刊:
- 影响因子:3.7
- 作者:Makarenkov,Oleg;Phung,Anthony
- 通讯作者:Phung,Anthony
Dwell time for switched systems with multiple equilibria on a finite time-interval
- DOI:
- 发表时间:2017-03
- 期刊:
- 影响因子:0
- 作者:O. Makarenkov;A. Phung
- 通讯作者:O. Makarenkov;A. Phung
Bifurcations of Finite-Time Stable Limit Cycles from Focus Boundary Equilibria in Impacting Systems, Filippov Systems, and Sweeping Processes
冲击系统、Filippov 系统和扫掠过程中有限时间稳定极限环与焦点边界平衡的分岔
- DOI:10.1142/s0218127418501262
- 发表时间:2018
- 期刊:
- 影响因子:2.2
- 作者:Makarenkov, Oleg;Niwanthi Wadippuli Achchige, Lakmi
- 通讯作者:Niwanthi Wadippuli Achchige, Lakmi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oleg Makarenkov其他文献
Crossing limit cycles in piecewise smooth Kolmogorov systems: An application to Palomba’s model
分段光滑科尔莫戈罗夫系统中的穿越极限环:对帕隆巴模型的一个应用
- DOI:
10.1016/j.cnsns.2025.108646 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:3.800
- 作者:
Yagor Romano Carvalho;Luiz F.S. Gouveia;Oleg Makarenkov - 通讯作者:
Oleg Makarenkov
Formation of a nontrivial finite-time stable attractor in a class of polyhedral sweeping processes with periodic input
一类具有周期输入的多面体扫描过程中非平凡有限时间稳定吸引子的形成
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
I. Gudoshnikov;Oleg Makarenkov;Dmitrii Rachinskii - 通讯作者:
Dmitrii Rachinskii
Oleg Makarenkov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oleg Makarenkov', 18)}}的其他基金
Collaborative Research: A Sweeping Process Framework to Control the Dynamics of Elastoplastic Systems
协作研究:控制弹塑性系统动力学的全面过程框架
- 批准号:
1916876 - 财政年份:2019
- 资助金额:
$ 18.69万 - 项目类别:
Standard Grant
相似海外基金
Conference: Semi-annual Workshop in Dynamical Systems and Related Topics at Penn State
会议:宾夕法尼亚州立大学动态系统及相关主题半年度研讨会
- 批准号:
2230142 - 财政年份:2022
- 资助金额:
$ 18.69万 - 项目类别:
Standard Grant
Semi-annual Workshop in Dynamical Systems and Related Topics at Penn State
宾夕法尼亚州立大学动力系统及相关主题半年度研讨会
- 批准号:
1800679 - 财政年份:2018
- 资助金额:
$ 18.69万 - 项目类别:
Standard Grant
Collaborative Research: Topics in Infinite-Dimensional and Stochastic Dynamical Systems
合作研究:无限维和随机动力系统主题
- 批准号:
1413603 - 财政年份:2014
- 资助金额:
$ 18.69万 - 项目类别:
Continuing Grant
Topics in number theory, dynamical systems and discrete geometry
数论、动力系统和离散几何主题
- 批准号:
1401224 - 财政年份:2014
- 资助金额:
$ 18.69万 - 项目类别:
Continuing Grant
Collaborative Research: Topics in Infinite-Dimensional and Stochastic Dynamical Systems
合作研究:无限维和随机动力系统主题
- 批准号:
1413060 - 财政年份:2014
- 资助金额:
$ 18.69万 - 项目类别:
Continuing Grant
Topics in Dynamical Systems: Attractors, Dimension, Lattice Models
动力系统主题:吸引子、维度、晶格模型
- 批准号:
1400027 - 财政年份:2014
- 资助金额:
$ 18.69万 - 项目类别:
Continuing Grant
Semi-annual Workshop in Dynamical Systems and Related Topics at Penn State
宾夕法尼亚州立大学动力系统及相关主题半年度研讨会
- 批准号:
1343081 - 财政年份:2013
- 资助金额:
$ 18.69万 - 项目类别:
Standard Grant
Dynamical Systems Special Topics: Dynamics of granular materials: jamming, avalanches, disorder, and localization
动力系统专题:颗粒材料动力学:干扰、雪崩、无序和定位
- 批准号:
1069224 - 财政年份:2011
- 资助金额:
$ 18.69万 - 项目类别:
Standard Grant
Topics in Dynamical Systems: Attractors, Dimension, Lattice Models
动力系统主题:吸引子、维度、晶格模型
- 批准号:
1101165 - 财政年份:2011
- 资助金额:
$ 18.69万 - 项目类别:
Continuing Grant
Travel Grants to the Meeting on Emerging Topics in Dynamical Systems and Partial Differential Equations
动力系统和偏微分方程新兴主题会议的旅费补助
- 批准号:
1005171 - 财政年份:2010
- 资助金额:
$ 18.69万 - 项目类别:
Standard Grant














{{item.name}}会员




