CAREER: Transfer Learning Based Quality Improvement in Spatially-Temporally Complex Systems

职业:时空复杂系统中基于迁移学习的质量改进

基本信息

  • 批准号:
    1149602
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-02-01 至 2018-01-31
  • 项目状态:
    已结题

项目摘要

The research objective of this Faculty Early Career Development (CAREER) award is to develop "transfer learning" based methodologies for quality improvement of manufacturing systems featured by a high product variety and short life cycles (called spatially-temporally complex systems). Such systems typically exist in semiconductor and renewable-energy manufacturing industries. The methodological innovation - transfer learning - refers to the capability of leveraging the knowledge gained during quality control of one process (or past generations of a process) for quality control of other processes (or a new generation). A body of statistically rigorous and computationally efficient transfer learning based methods will be developed to achieve various quality control objectives such as process modeling, monitoring, root cause diagnosis, sensor uncertainty modeling, and sensor placement. Integrated with the research is an ambitious education plan aiming at equipping future workforce with new science and engineering knowledge and associated skills in quality improvement. If successful, the results of this research will significantly expedite the learning curve in quality improvement of each process in a manufacturing system through effective knowledge transfer from other processes and past generations. This will enable robust, real-time and even proactive quality control decision making to keep up with rapid product proliferation and generation changes. Through validation and application in semiconductor and solar energy manufacturing, this research will provide breakthrough technologies to significantly improve the quality, productivity, and cost-effectiveness of these industries. The research methodologies are also transferrable to the study of other systems such as health care delivery, human brain, and biological systems. A broad array of educational activities will be pursued, including new course development, industrial training sessions, undergraduate and minority students involvement, and K-12 students and teachers outreach. Research and education programs will be established through strong international collaboration to achieve global impact.
该学院早期职业发展(CAREER)奖的研究目标是开发基于“迁移学习”的方法,用于提高具有高产品多样性和短生命周期的制造系统(称为时空复杂系统)的质量。这种系统通常存在于半导体和可再生能源制造行业。方法创新-迁移学习-是指利用在一个过程(或一个过程的过去几代)的质量控制过程中获得的知识进行其他过程(或新一代)质量控制的能力。将开发一系列统计上严格和计算上有效的基于迁移学习的方法,以实现各种质量控制目标,如过程建模、监控、根本原因诊断、传感器不确定性建模和传感器放置。 与研究相结合的是一项雄心勃勃的教育计划,旨在为未来的劳动力提供新的科学和工程知识以及质量改进的相关技能。如果成功,本研究的结果将显着加快学习曲线,在质量改进的每个过程中的制造系统,通过有效的知识转移,从其他过程和过去的几代人。这将使强大的,实时的,甚至主动的质量控制决策,以跟上快速的产品扩散和一代的变化。通过在半导体和太阳能制造中的验证和应用,这项研究将提供突破性技术,以显着提高这些行业的质量,生产率和成本效益。研究方法也可转移到其他系统的研究,如医疗保健提供,人脑和生物系统。将开展广泛的教育活动,包括新课程开发,工业培训课程,本科生和少数民族学生的参与,以及K-12学生和教师的推广。 研究和教育计划将通过强有力的国际合作建立,以实现全球影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jing Li其他文献

Interactive visual analytics of moving passenger flocks using massive smart card data
使用大量智能卡数据对移动旅客群进行交互式视觉分析
Atomistic description of Si etching with HCl
用 HCl 蚀刻 Si 的原子描述
  • DOI:
    10.1016/j.apsusc.2024.159836
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Biel Martínez;Jing Li;Hector Prats;Benoît Sklénard
  • 通讯作者:
    Benoît Sklénard
Preparation and Mechanical Properties of Carbon Nanotubes Reinforced Al2O3/TiC composites
碳纳米管增强Al2O3/TiC复合材料的制备及力学性能
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jing Li;Hui Liu
  • 通讯作者:
    Hui Liu
Occurrence, migration and health risk of phthalates in tap water, barreled water and bottled water in Tianjin, China
天津市自来水、桶装水和瓶装水中邻苯二甲酸盐的存在、迁移及健康风险
  • DOI:
    10.1016/j.jhazmat.2020.124891
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Chenchen Wang;Panpan Huang;Chunsheng Qiu;Jing Li;Shuailong Hu;Liping Sun;Yaohui Bai;Fu Gao;Chaocan Li;Nannan Liu;Dong Wang;Shaopo Wang
  • 通讯作者:
    Shaopo Wang
Multiple mediators in the relationship between perceived teacher autonomy support and student engagement in math and literacy learning
感知教师自主支持与学生数学和识字学习参与度之间关系的多重中介因素
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hongrui Liu;M. Yao;Jing Li;Ruoxuan Li
  • 通讯作者:
    Ruoxuan Li

Jing Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jing Li', 18)}}的其他基金

CAREER: Towards Safety-Critical Real-Time Systems with Learning Components
职业:迈向具有学习组件的安全关键实时系统
  • 批准号:
    2340171
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: RUI: Structured Population Dynamics Subject to Stoichiometric Constraints
合作研究:RUI:受化学计量约束的结构化人口动态
  • 批准号:
    2322104
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
PIPP Phase I: Comprehensive, Integrated, Intelligent System for Early and Accurate Pandemic Prediction, Prevention, and Preparation at Personal and Population Levels
PIPP第一阶段:全面、集成、智能的系统,用于个人和人群层面的早期、准确的流行病预测、预防和准备
  • 批准号:
    2200255
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: Market Conduct in Technology Adoption in the Automobile Industry
NSF-BSF:合作研究:汽车行业技术采用的市场行为
  • 批准号:
    2049263
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Associative In-Memory Graph Processing Paradigm: Towards Tera-TEPS Graph Traversal In a Box
职业:关联内存图处理范式:在盒子中实现 Tera-TEPS 图遍历
  • 批准号:
    2040463
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
FET: CCF: Small: Computational Drug Prediction through Joint Learning
FET:CCF:小型:通过联合学习进行计算药物预测
  • 批准号:
    2006780
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Inverse Mapping of Spatial-Temporal Molecular Heterogeneity from Imaging Phenotype
从成像表型逆映射时空分子异质性
  • 批准号:
    2053170
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
RAPID:Genomic Variation Analysis of Coronavirus to Better Understand the Spread of COVID-19
RAPID:冠状病毒的基因组变异分析,以更好地了解 COVID-19 的传播
  • 批准号:
    2027667
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CRII: CSR: Enabling Efficient Real-Time Systems upon Multiple Parallel Resources
CRII:CSR:在多个并行资源上实现高效的实时系统
  • 批准号:
    1948457
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Inverse Mapping of Spatial-Temporal Molecular Heterogeneity from Imaging Phenotype
从成像表型逆映射时空分子异质性
  • 批准号:
    1903135
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant

相似国自然基金

具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
  • 批准号:
    61806040
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Trustworthy Hypothesis Transfer Learning
可信假设迁移学习
  • 批准号:
    DE240101089
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Early Career Researcher Award
Adaptive Multi-Source Transfer Learning Approaches for Environmental Challenges
应对环境挑战的自适应多源迁移学习方法
  • 批准号:
    EP/Y002539/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
Transfer Learning for Monte Carlo Methods
蒙特卡罗方法的迁移学习
  • 批准号:
    EP/Y022300/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
CAREER: New data integration approaches for efficient and robust meta-estimation, model fusion and transfer learning
职业:新的数据集成方法,用于高效、稳健的元估计、模型融合和迁移学习
  • 批准号:
    2337943
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Transfer learning in the prediction of catalytic activity of photosensitizers
迁移学习在光敏剂催化活性预测中的应用
  • 批准号:
    23K13744
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of an sEMG-based Human-Computer Interface Utilizing Deep Transfer Learning and Continual Learning
利用深度迁移学习和持续学习开发基于表面肌电图的人机界面
  • 批准号:
    23H03445
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Transfer of statistical learning from perception to production
将统计学习从感知转移到生产
  • 批准号:
    2346989
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
  • 批准号:
    2324490
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
  • 批准号:
    2324489
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Transfer learning leveraging large-scale transcriptomics to map disrupted gene networks in cardiovascular disease
利用大规模转录组学的转移学习来绘制心血管疾病中被破坏的基因网络
  • 批准号:
    10696753
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了